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Vibration Suppression for Coupled Wave PDEs
in Deep-Sea Construction

Ji Wang , Member, IEEE, and Miroslav Krstic , Fellow, IEEE

Abstract— A deep-sea construction vessel (DCV) is used to
install underwater parts of an offshore oil drilling platform at
the designated locations on the seafloor. By using extended Hamil-
ton’s principle, a nonlinear partial differential equation (PDE)
system governing the lateral-longitudinal coupled vibration
dynamics of the DCV consisting of a time-varying-length cable
with an attached item is derived, and it is linearized at the steady
state generating a linear PDE model, which is extended to a more
general system including two coupled wave PDEs connected with
two interacting ordinary differential equations (ODEs) at the
uncontrolled boundaries. Through a preliminary transformation,
an equivalent reformulated plant is generated as a 4 × 4 coupled
heterodirectional hyperbolic PDE-ODE system characterized by
spatially varying coefficients on a time-varying domain. To sta-
bilize such a system, an observer-based output-feedback control
design is proposed, where the measurements are only placed at
the actuated boundary of the PDE, namely, at the platform at the
sea surface. The exponential stability of the closed-loop system,
boundedness and exponential convergence of the control inputs,
are proved via Lyapunov analysis. The obtained theoretical result
is tested on a nonlinear model with ocean disturbances, even
though the design is developed in the absence of such real-world
effects.

Index Terms— Backstepping, boundary control, distributed
parameter system, vibration control, wave partial differential
equation (PDE).

I. INTRODUCTION

A. Deep-Sea Construction Vessels (DCVs)

IN DEEP-SEA oil exploration, a DCV is an important
device used to install equipment such as a subsea manifold,

a subsea pump station, and flowlines at the designated loca-
tions around the drill center on the seafloor [24], [25]. A domi-
nant component in the DCV is a long cable with time-varying
length, whose top part is attached to a ship-mounted crane
and the bottom is attached to the equipment (referred to as
payloads hereafter). Excessive vibration of the cable due to its
compliant and lightweight properties is a major problem affect-
ing the payload positioning precision of the DCV. Besides
this, the excessive vibration also may cause premature fatigue
fracture of the cable especially at the connection point [17],
which would raise the cost of part replacement or maintenance
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of the DCV. Therefore, vibration suppression for the cable in
the DCV is well motivated for improving the performance of
the DCV.

B. Vibration Control of String/Cable

Vibration control of a string/cable has received much atten-
tion in the past several decades. An active vibration control
strategy was designed for a vibrational string in [36], where
the actuator and sensor are required to be placed at the interior
point of the cable. He et al. [17], [18] suppressed the undesired
vibrations of a moving vibrational string by applying control
inputs at both boundaries. In [37], robust adaptive vibration
control was proposed for a disturbed vibrating string whose
one boundary is fixed and the opposite one is connected with a
payload regulated by the control input. However, the required
actuator layouts of the aforementioned control systems are
unsuitable for the DCV where the actuator is only available
at the ship-mounted crane, i.e., the top end of the cable.

C. Boundary Control of Wave Partial Differential
Equation-Ordinary Differential Equation (PDE-ODE)
Systems

The mathematical model of a vibrational string/cable is
a wave PDE, and the attached payload is modeled as an
ODE at the PDE uncontrolled boundary. Boundary control
of a wave PDE-ODE system where the control input and
the unstable ODE are anticollocated is a more challenging
task than the classical collocated “boundary damper” feedback
control. The stabilization of such a wave PDE-ODE system
on a fixed domain was presented in [19] and [26]. For a wave
PDE-nonlinear ODE system, the boundary control problem is
also studied in [7] and [9]. Wang et al. [32], [33] presented
the boundary control of a wave PDE-ODE coupled system on
a time-varying domain, which physically describes the axial
vibration of a mining cable elevator. Adaptive boundary con-
trol of a wave PDE-ODE coupled system with unknown para-
meters was also considered in [31]. The aforementioned works
only concern a single wave PDE describing vibrations in one
direction. Challenges appear in the suppression of 2-D string
vibrations, because there are in-domain couplings between two
wave PDEs.

D. Boundary Control of Coupled Heterodirectional
Transport PDEs

A feasible approach to solving the boundary control
problem of in-domain coupled wave PDEs is by introducing
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Riemann transformations to convert the plant to coupled
transport PDEs, for which the boundary control problem has
been a research focus for the past ten years, with many authors
contributing to this topic. Basic boundary stabilization of
2×2 coupled linear transport PDEs, i.e., two heterodirectional
coupled transport PDEs, by backstepping was proposed in [8]
and [27]. It was further extended to boundary control of a
n + 1 system in [21]. For a more general coupled linear
transport PDE system where the number of PDEs in either
direction is arbitrary, the boundary stabilization problem was
first addressed in [16] by backstepping, which leads to a
systematic framework for the backstepping-based control of
this type of system. Moreover, adaptive control with unknown
system parameters or disturbance rejection for external peri-
odic disturbances in coupled heterodirectional transport PDEs
has appeared in [3], [4] and [1], [2], [10], [11], respectively.
Considering the attached massive payload at the bottom of
the cable, boundary control of coupled linear transport PDEs
connected with an ODE at the uncontrolled boundary can
also be found in [12], [22], and [35]. The aforementioned
works on coupled transport PDEs focus on the constant spatial
domain rather than a time-varying domain introduced by the
time-varying length of the cable.

E. Contribution

1) To the best of our knowledge, our result is the first for
boundary control of a two-dimensional coupled vibrating
cable of time-varying length, where only one control
input is applied at one boundary without requirements
of energy dissipation or another controller on another
boundary.

2) A similar physical problem was considered in [5] which
presented state-feedback control design while neglecting
the couplings between two directions of vibration and
assuming the cable length as constant. An observer-
based output-feedback is proposed here, considering the
coupled vibrations of a time-varying-length cable.

3) Di Meglio et al. [22] first proposed a full-state feedback
law needing measurements of the distributed states for
a general coupled linear heterodirectional hyperbolic
PDE-ODE system on a fixed domain. We develop a
design for such systems on a time-varying domain, and
using only measurements at the actuated boundary.

4) As compared to our previous results about longitudinal
vibration suppression control of cables in PDE-modeled
mining cable elevators [32]–[34], this article achieves
suppression of longitudinal-lateral coupled vibrations in
cables, where the in-domain couplings between wave
PDEs, i.e., the couplings between two direction vibra-
tions, make the control design more challenging.

For complete clarity, the comparisons with our previous results
and other related results from the theoretical and application
aspects are summarized in Tables I and II, respectively.

F. Organization

This article is organized as follows. In Section II, a nonlinear
distributed parameter model governing the longitudinal-lateral

TABLE I

COMPARISONS WITH APPLICATION RESULTS ON BOUNDARY
VIBRATION CONTROL OF CABLES

vibration dynamics of the DCV is derived by Hamilton’s
principle, which is then linearized around the steady state and
extended to a general plant, based on which the control design
would be conducted in the following sections. In Section III,
the state-feedback control design is presented and the expo-
nential stability result of the state-feedback closed-loop system
is proved. In Section IV, we design a state observer and
prove the exponential convergence to zero of observer errors.
In Section V, we propose an observer-based output-feedback
controller and establish the main result in the output-feedback
closed-loop system. In Section VI, the obtained theoretical
result is tested on a nonlinear model with ocean disturbances,
even though the design is developed in the absence of such
real-world effects. In Section VII, the conclusion and future
work are provided.

G. Notation

Throughout this article, the partial derivatives and total
derivatives are denoted as fx(x, t) = (∂ f /∂x)(x, t), ft (x, t) =
(∂ f /∂ t)(x, t), f ′(x) = (d f (x)/dx), ḟ (t) = (d f (t)/dt).

II. PROBLEM FORMULATION

A. Modeling

DCVs are often used for installation of underwater parts for
an offshore drilling platform, such as a subsea manifold, a sub-
sea pump station, and a subsea distribution unit along with
associated foundations, flowlines, and umbilicals [24], [25].
A DCV is depicted in Fig. 1, where a crane mounted on
a ship regulates a cable to install the equipment (attached
payload) at the target position on the seabed. The attached
payload is subject to a constant drag force caused by a
constant water stream velocity. We only consider the water-
stream-caused drag force at the payload because the diameter
of the cable is much smaller than that of the payload. For
suppression of cable oscillation/vibration, two-directional con-
trol forces implemented by two actuators (hydraulic cylinder
and hydraulic motor) and measurements by accelerometers
are applied/placed at the ship-mounted crane. Note that cable
motion is provided by an additional winch winded by cable on
the ship, which can be considered as a predefined time-varying
function l(t) of cable length in the cable vibration dynamics
regulated by the cranes. We neglect the dynamics of the
ship, i.e., regarding it as fixed, because it can be kept at
the desired position by the ship dynamic positioning system.
Crane dynamics are also neglected, and the control input
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TABLE II

COMPARISONS WITH RECENT THEORETICAL RESULTS ON BOUNDARY CONTROL OF LINEAR COUPLED TRANSPORT PDE-ODE SYSTEMS

Fig. 1. Diagram of a deep-sea construction vessel.

is considered to act on the top end of the cable directly.
Incorporating the crane dynamics into the actuation path of the
cable would generate an ODE-coupled hyperbolic PDE-ODE
system. The control problem of such a sandwiched system
was addressed in [28] which, however, only dealt with 1-D
vibrations of DCV with a constant-length cable.

To describe the vibrations of the cable, the classical moving
frame approach [6] is used. In Fig. 1, the xoy Frame, which
is a moving coordinate associated with cable motion, i.e., the
time-varying cable length l(t), moves along line lθ , where x
ranges from x = 0 at the cable bottom to x = l(t) at the top
end. The other coordinate frame xoy is earth fixed. Buoyancy
on the cable can be easily included by adjusting the cable
linear density mc as ρ = mc−ρwAa, and changing the payload
mass ML as M = ML −ρwVp, when calculating the gravity of
the payload. The physical parameters of the DCV are shown
in Table III, and the given values are used in the simula-
tion. Denote the longitudinal and (in-plane) lateral dynamic
deflections in the distributed position x in the cable as h(x, t)
and w(x, t), respectively. Applying extended Hamilton’s prin-
ciple [23], nonlinear governing equations of 2-D vibration

TABLE III

PHYSICAL PARAMETERS OF THE DCV

dynamics of the DCV are obtained as

−mc(htt (x, t)− l̈(t))+ E Aahxx (x, t)

+ cu(ht (x, t)− l̇(t))+ E Aawx(x, t)wxx (x, t) = 0 (1)

−mcwtt (x, t)+ 3

2
E Aawx(x, t)2wxx (x, t)+ T (x)wxx (x, t)

+ E Aahx(x, t)wxx (x, t)+ E Aahxx (x, t)wx(x, t)

+ cvwt(x, t)+ T ′(x)wx(x, t) = 0 (2)

ML (htt (0, t) − l̈(t))+ ch(ht(0, t) − l̇(t))+ E Aahx(0, t)

+ 1

2
E Aawx(0, t)2 = 0 (3)

MLwtt (0, t)+ cwwt (0, t)+ 1

2
E Aawx(0, t)3

+ E Aahx(0, t)wx (0, t)+ T (0)wx(0, t)+ F0 = 0 (4)

−
(

E Aa

(
hx(l(t), t) + 1

2
wx(l(t), t)2

)
+ T (l(t))

)
wx(l(t), t)

− l̇(t)ρwt (l(t), t)+ Ū2(t) = 0 (5)

−E Aa

(
hx(l(t), t) + 1

2
wx(l(t), t)2

)
− T (l(t))

− l̇(t)ρ(ht (l(t), t) − l̇(t))+ Ū1(t) = 0 (6)

where F0 = (ρw/2)Cd V 2
s is the water-stream-caused drag

force at the attached payload [5]. Please see [29, Section II]
for the detailed modeling process of (1)–(6). The obtained
model is a strongly nonlinear system, so an approximated
linear model that is suitable for control design should be built.
In Section II-B, the nonlinear PDE model (1)–(6) is linearized
around a steady state [5].
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B. Linearization

The steady states of the distributed strain and pivot angle
ε(x, t), φ(x, t) can be analytically calculated and expressed as

ε̄(x) = 1

E Aa

√
(ρgx + Mg)2 + F2

0 (7)

φ̄(x) = ϑ̄(x)− θ = arctan

(
F0

ρgx + Mg

)
− θ (8)

where θ = arctan(F0/(ρgL + Mg)1/2).
In nonlinear terms of (1)–(6), by replacing hx(x, t), which

approximately describes the distributed strain in the cable,
by ε̄(x) and replacing −wx(x, t), which is approximately
equal to the pivot angle φ(x, t) in Fig. 1, by φ̄(x), a linear
model is obtained as

−mcutt(x, t)+ E Aauxx (x, t)− E Aawx(x, t)φ̄′(x)
+ cuut (x, t) = 0 (9)

−mcwt t(x, t)+
(

3

2
E Aaφ̄(x)

2 + T (x)

)
wxx (x, t)

+ (E Aa ε̄
′(x)+ ρg)wx(x, t)

+ cvwt(x, t)− E Aaφ̄
′(x)ux(x, t) = 0 (10)

ML utt (0, t)+ chut(0, t) + E Aaux(0, t)

− E Aa

2
φ̄(0)wx(0, t) = 0 (11)

MLwt t (0, t)+ cwwt (0, t)+ 1

2
E Aaφ̄(0)2wx(0, t)

+ E Aaφ̄(0)ux(0, t) = 0 (12)

wx(l(t), t) = 1

E Aa ε̄(l(t))+ E Aa
2 φ̄(l(t))2 + T (l(t))

U2(t)

(13)

ux(l(t), t) = 1

E Aa
U1(t) (14)

with defining u(x, t) = h(x, t)− l(t) and

U1(t) = Ū1(t)+ E Aa

2
φ̄(l(t))2

− T (l(t))− l̇(t)ρut (l(t), t) (15)

U2(t) = Ū2(t)− l̇(t)ρwt (l(t), t) (16)

where T (x) is static tension given by

T (x) = ρgx + Mg. (17)

From a practical point of view, available measurements
are acceleration signals utt (l(t), t),wtt (l(t), t) obtained by
accelerometers placed at the crane, because measuring vibra-
tional acceleration rather than velocity/displacement is a more
convenient way in a vibrational mechanical system. The veloc-
ity signals ut (l(t), t),wt (l(t), t) can then be obtained by the
integration of the measured acceleration signals under known
initial conditions.

Therefore, the vibration control design of the DCV cor-
responds to the boundary control of the abovementioned
coupled wave PDEs (9)–(14), characterized by spatially vary-
ing coefficients related to the steady states, the time-varying
domain introduced by the time-varying length of the cable and
second-order boundary conditions describing the dynamics
of the attached payload. Note that using the known signals

ut(l(t), t),wt (l(t), t), the designed control laws U1(t),U2(t)
can be converted to the physical control forces Ū1(t), Ū2(t) at
the crane via (8) and (17).

C. General Plant

In this article, we represent (9)–(14) in a more general
form which includes more couplings between two wave PDEs,
in both the domain and the dynamic boundary, and we
consider the boundary control problem for this general model.
The obtained theoretical result is then applied back to the
specific application problem of the DCV, i.e., (9)–(14) in the
simulation.

The concerned plant is

wtt (x, t) = d1(x)wxx(x, t)+ d2(x)wx(x, t)+ d3(x)ux(x, t)

+ d4(x)wt(x, t)+ d5(x)ut(x, t) (18)

utt (x, t) = d6(x)uxx(x, t)+ d7(x)wx(x, t)+ d8(x)ux(x, t)

+ d9(x)wt(x, t)+ d10(x)ut(x, t) (19)

wtt (0, t) = d11wt(0, t) + d12wx(0, t)+ d13ut(0, t)

+ d14ux(0, t) (20)

utt (0, t) = d15ut(0, t)+ d16ux(0, t)+ d17wt (0, t)

+ d18wx(0, t) (21)

ux(l(t), t) = d19(l(t))U1(t) (22)

wx(l(t), t) = d20(l(t))U2(t) (23)

∀(x, t) ∈ [0, l(t)] × [0,∞), and assumed measurements are
ut(l(t), t),wt (l(t), t) according to the available measurements
in the DCV mentioned in Section II-B. Wave PDEs w and
u are coupled with each other both in the domain and at the
dynamic boundary. System coefficients d12, d11, d13, d16, d17,
d15, d18, d14 are arbitrary constants, and d19(l(t)), d20(l(t))
are nonzero. The known time-varying domain l(t) and the
spatially varying coefficients d1(x), d2(x), d3(x), d6(x), d7(x),
d8(x), d4(x), d5(x), d9(x), d10(x) are under the following
assumptions.

Assumption 1: l(t) is bounded by 0 < l(t) ≤ L, ∀t ≥ 0.
Assumption 2: l̇(t) is bounded by [M,M], where M satis-

fies M < min0≤x≤L {√d1(x),
√

d6(x)}, and M is arbitrary in
(−∞,M).

Assumption 3: The spatially varying coefficients d1(x),
d2(x), d3(x), d4(x), d5(x), d6(x), d7(x), d8(x), d9(x), d10(x)
are bounded, ∀x ∈ [0, L].

Assumption 4: d1(x), d6(x) ∈ C1 are positive and d1(x) 	=
d6(x), ∀x ∈ [0, L].

Remark 1: Assumptions 1–4 about the time-varying spatial
domain and the spatially varying coefficients of (18)–(23)
are fully satisfied in the application of the DCV, which can
be easily checked by the specific expressions of d1, . . . , d20

(168)–(174) and parameter values in Table III of the DCV in
the simulation.

Remark 2: The general plant (18)–(23) whose diagram
is shown in Fig. 2 covers the vibration dynamics of the
DCV (9)–(14) considered in this article, namely, (9)–(14)
being a particular case of (18)–(23) by setting the coefficients
d1, . . . , d20 as the expressions (168)–(174) in simulation.
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Fig. 2. Diagram of the plant (18)–(23). The italicized text in gray describes
the according physical meanings of (18)–(23) in the specific application of
the DCV.

Moreover, (18)–(23) can also cover the coupled vibration
dynamics of mining cable elevators or oil drilling systems.

Our objective is to exponentially stabilize (18)–(23) through
designing control inputs U1(t), U2(t) in (22) and (23) only
using boundary values ut (l(t), t),wt (l(t), t), i.e., a collocated
type output-feedback control system. Note that well-posedness
of (18)–(23) can be seen clearly based on an equivalent
reformulated plant shown in Section II-D.

D. Reformulated Plant

A preliminary transformation, which allows one to convert
the original plant (18)–(23) to a reformulated plant based on
which the control design will be conducted, will be utilized
in the following.

We introduce a set of Riemann transformations

z(x, t) = wt (x, t)+ √
d1(x)wx(x, t) (24)

v(x, t) = wt (x, t)− √
d1(x)wx(x, t) (25)

k(x, t) = ut(x, t)+ √
d6(x)ux(x, t) (26)

y(x, t) = ut(x, t)− √
d6(x)ux(x, t) (27)

and define new variables as

X (t) = [w(0, t),wt (0, t)], Y (t) = [u(0, t), ut (0, t)] (28)

to reformulate (18)–(23) as

yt(x, t)+ √
d6(x)yx(x, t)

=
(

d7(x)

2
√

d1(x)
+ d9(x)

2

)
z(x, t)

+
(

s1(x)+ d10(x)

2

)
k(x, t)

+
(

d9(x)

2
− d7(x)

2
√

d1(x)

)
v(x, t)

+
(

d10(x)

2
− s1(x)

)
y(x, t) (29)

kt(x, t)− √
d6(x)kx(x, t)

=
(

d7(x)

2
√

d1(x)
+ d9(x)

2

)
z(x, t)

+
(

s1(x)+ d10(x)

2

)
k(x, t)

+
(

d9(x)

2
− d7(x)

2
√

d1(x)

)
v(x, t)

+
(

d10(x)

2
− s1(x)

)
y(x, t) (30)

vt (x, t)+ √
d1(x)vx(x, t)

=
(

s2(x)+ d4(x)

2

)
z(x, t)

+
(

d3(x)

2
√

d6(x)
+ d5(x)

2

)
k(x, t)

+
(

d4(x)

2
− s2(x)

)
v(x, t)

+
(

d5(x)

2
− d3(x)

2
√

d6(x)

)
y(x, t) (31)

zt (x, t)− √
d1(x)zx(x, t)

=
(

s2(x)+ d4(x)

2

)
z(x, t)

+
(

d3(x)

2
√

d6(x)
+ d5(x)

2

)
k(x, t)

+
(

d4(x)

2
− s2(x)

)
v(x, t)

+
(

d5(x)

2
− d3(x)

2
√

d6(x)

)
y(x, t)

(32)

v(0, t) = 2C2 X (t)− z(0, t), y(0, t) = 2C2Y (t)− k(0, t)

(33)

Ẋ(t) =
(

A1 − B1d12C2√
d1(0)

)
X (t)+ B1d12√

d1(0)
z(0, t)

+
(

d13 B1C2 − B1d14C2√
d6(0)

)
Y (t)+ B1d14√

d6(0)
k(0, t)

(34)

Ẏ (t) =
(

A2 − B1d16C2√
d6(0)

)
Y (t)+ B1d18√

d1(0)
z(0, t)

+
(

d17 B1C2 − B1d18C2√
d1(0)

)
X (t)+ B1d16√

d6(0)
k(0, t)

(35)

k(l(t), t) = 2
√

d6(l(t))d19(l(t))U1(t)+ y(l(t), t) (36)

z(l(t), t) = 2
√

d1(l(t))d20(l(t))U2(t)+ v(l(t), t) (37)

where s1(x) = (d8(x)− (1/2)d6
′(x))/(2

√
d6(x) ), s2(x) =

(d2(x)− (1/2)d1
′(x))/(2

√
d1(x) ), and

A1 =
[

0 1
0 d11

]
, A2 =

[
0 1
0 d15

]
(38)

B1 =
(

0
1

)
, C2 = (

0 1
)
. (39)

The diagram of the system (29)–(37) is depicted in Fig. 3.
Equations (29)–(37) represent an unstable 4 × 4 coupled
linear heterodirectional hyperbolic PDE-ODE system, where
y(x, t), v(x, t), and k(x, t), z(x, t) propagate in opposite
direction, and the four transport PDEs are coupled with each
other in the time-varying spatial domain [0, l(t)] and coupled
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Fig. 3. Diagram of the system (29)–(37).

with two ODEs X (t),Y (t) which are coupled with each other
as well at the uncontrolled boundary x = 0. Compared
with our previous result in [34], the two pairs of 2 × 2
coupled linear heterodirectional hyperbolic PDE-ODE systems
are extended to one 4×4 system because additional in-domain
couplings between original wave PDEs are considered. More-
over, the assumption that some ODE states at the uncontrolled
boundary are measurable [34] is removed in this article.

In order to rewrite (29)–(37) in a compact form, i.e., in a
matrix representation, we define new variables as

p(x, t) = [y(x, t), v(x, t)]T (40)

r(x, t) = [k(x, t), z(x, t)]T (41)

W (t) = [X (t),Y (t)]T . (42)

Equations (29)–(37) can then be rewritten as

pt(x, t)+Q(x)px(x, t) = Ta(x)r(x, t)+Tb(x)p(x, t) (43)

rt (x, t)−Q(x)rx(x, t) = Ta(x)r(x, t)+Tb(x)p(x, t) (44)

p(0, t) = C3W (t)−r(0, t) (45)

Ẇ (t) = ( Ā− B̄C3)W (t)+2B̄r(0, t) (46)

r(l(t), t) = R(l(t))U(t)+ p(l(t), t) (47)

where U(t) = [U1(t),U2(t)]T , R(l(t)) =
2diag{(d6(l(t)))1/2d19(l(t)), (d1(l(t)))1/2d20(l(t))}, Q(x) =
diag{Q1(x), Q2(x)} = diag{(d6(x))1/2, (d1(x))1/2}. Ā,C3, B̄
and Ta(x) = {Tai j(x)}1≤i, j≤2, Tb(x) = {Tbi j(x)}1≤i, j≤2 are
shown as follows:

Ā =
[

A1 d13 B1C2

d17 B1C2 A2

]
, C3 = 2

[
0 C2

C2 0

]
(48)

B̄ = 1

2

⎡
⎢⎣

B1d14√
d6(0)

B1d12√
d1(0)

B1d16√
d6(0)

B1d18√
d1(0)

⎤
⎥⎦ = 1

2

⎡
⎢⎢⎢⎢⎢⎣

0 0
d14√
d6(0)

d12√
d1(0)

0 0
d16√
d6(0)

d18√
d1(0)

⎤
⎥⎥⎥⎥⎥⎦

(49)

Ta(x) =

⎡
⎢⎢⎣

s1(x)+ d10(x)

2

d7(x)

2
√

d1(x)
+ d9(x)

2
d3(x)

2
√

d6(x)
+ d5(x)

2
s2(x)+ d4(x)

2

⎤
⎥⎥⎦ (50)

Tb(x) =

⎡
⎢⎢⎣

d10(x)

2
− s1(x)

d9(x)

2
− d7(x)

2
√

d1(x)
d5(x)

2
− d3(x)

2
√

d6(x)

d4(x)

2
− s2(x)

⎤
⎥⎥⎦. (51)

Assumption 5: ( Ā − B̄C3, B̄) is controllable and
( Ā − B̄C3,C3) is observable.

Assumption 5 is required for the stabilization of the ODE
subsystem (46) in the state-feedback and observer design, and
is also satisfied in the DCV model by checking the system
parameters in the simulation.

Remark 3: The reformulated plant (43)–(47) obtained from
(18)–(23) via the preliminary transformation in Section II-D
is well-posed, because it is analogous to the well-posed plant
in [22] with setting m = n = 2, which indicates that the
original plant (18)–(23) is also well-posed because of the
invertible preliminary transformation.

As compared to [22] where state-feedback control design
requiring distributed states on a constant PDE domain was
presented, we develop an observer-based output-feedback
controller upon (43)–(47) on a time-varying PDE domain,
and only collocated boundary states are assumed measurable.
Then, the control input and the stability result will be formu-
lated back in the original plant (18)–(23).

III. STATE-FEEDBACK CONTROL DESIGN

A. Backstepping Design

We seek an invertible transformation that converts the
system (43)–(47) (p(x, t), r(x, t),W (t)) into a so-called target
system whose exponential stability is obvious.

We postulate the backstepping transformation in the form

α(x, t) = p(x, t)−
∫ x

0
K (x, y)p(y, t)dy

−
∫ x

0
J (x, y)r(y, t)dy−γ (x)W (t) (52)

β(x, t) = r(x, t)−
∫ x

0
F(x, y)p(y, t)dy

−
∫ x

0
N(x, y)r(y, t)dy−λ(x)W (t) (53)

where

K (x, y) = {Ki j(x, y)}1≤i, j≤2, J (x, y) = {Ji j(x, y)}1≤i, j≤2

F(x, y) = {Fi j(x, y)}1≤i, j≤2, N(x, y) = {Ni j (x, y)}1≤i, j≤2

on the triangular domain D = {0 ≤ y ≤ x ≤ l(t)}, and
γ (x) = {γi j(x)}1≤i≤2,1≤ j≤4,λ(x) = {λi j(x)}1≤i≤2,1≤ j≤4 are to
be determined. The target system (α(x, t), β(x, t),W (t)) is
designed as

Ẇ (t) = ÂW (t) + 2B̄β(0, t) (54)

αt (x, t) = −Q(x)αx(x, t)

+ T̄b(x)α(x, t)+ g1(x)β(0, t) (55)

βt(x, t) = Q(x)βx(x, t)+ T̄a(x)β(x, t)+g(x)β(0, t) (56)

α(0, t) = −β(0, t) (57)

β(l(t), t) = 0 (58)
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where Â = Ā − B̄C3 + 2B̄κ is a Hurwitz matrix by choos-
ing κ = {κi j}1≤i≤2,1≤ j≤4 recalling Assumption 5. Note that
T̄a(x), T̄b(x) are diagonal matrices consisting of the diagonal
elements of (50) and (51), denoted as T̄a(x) = diag{T̄ai(x)}
and T̄b(x) = diag{T̄bi (x)} for i = 1, 2. Thus, all cou-
pling terms in the PDE domain (43) and (44) are removed.
g(x), g1(x) are in the form of

g(x) =
(

0 0
ga(x) 0

)
, g1(x) =

(
0 0

gb(x) 0

)
(59)

where ga(x) = (d6(0))1/2 F21(x, 0) − λ22(x)d14/(d6(0))1/2 −
λ24(x)d16/(d6(0))1/2 + (d6(0))1/2 N21(x, 0) and
gb(x) = (d6(0))1/2 J21(x, 0) − γ22(x)d14/(d6(0))1/2 −
γ24(x)d16/(d6(0))1/2 + (d6(0))1/2 K21(x, 0). Equations
(54)–(58) are exponentially stable, as we will see in the
stability analysis via Lyapunov function in Theorem 1.

By matching the systems (43)–(47) and (54)–(58) through
(52) and (53), a lengthy but straightforward calculation leads
to the conditions on the kernels in (52) and (53) as follows.
F(x, y), N(x, y), and λ(x) should satisfy the matrix equations

Q(x)F(x, x)+ F(x, x)Q(x) = −Tb(x) (60)

Q(x)N(x, x)− N(x, x)Q(x) = T̄a(x)− Ta(x) (61)

N(x, 0)Q(0) = −F(x, 0)Q(0)+ 2λ(x)B̄ + g(x) (62)

Q(x)Nx (x, y)+ Ny(x, y)Q(y)+ N(x, y)Q′(y)
−N(x, y)Ta(y)+ T̄a(x)N(x, y)− F(x, y)Ta(y) = 0 (63)

Q(x)Fx(x, y)− Fy(x, y)Q(y)− F(x, y)Q′(y)
−F(x, y)Tb(y)+ T̄a(x)F(x, y)− N(x, y)Tb(y) = 0 (64)

Q(x)λ′(x)− λ(x)( Ā − B̄C3)+ T̄a(x)λ(x)

− F(x, 0)Q(0)C3 + g(x)λ(0) = 0 (65)

λ(0) = κ (66)

and K (x, y), J (x, y), and γ (x) should satisfy

−Q(x)J (x, x)− J (x, x)Q(x) = −Ta(x) (67)

K (x, x)Q(x)− Q(x)K (x, x) = T̄b(x)− Tb(x) (68)

K (x, 0)Q(0) = −J (x, 0)Q(0)+ 2γ (x)B̄ + g1(x) (69)

−Q(x)Jx(x, y)+ Jy(x, y)Q(y)+ J (x, y)Q′(y)

− J (x, y)Ta(y)+ T̄b(x)J (x, y)− K (x, y)Ta(y) = 0 (70)

−Q(x)Kx(x, y)− Ky(x, y)Q(y)− K (x, y)Q′(y)
−K (x, y)Tb(y)+ T̄b(x)K (x, y)− J (x, y)Tb(y) = 0 (71)

Q(x)γ ′(x)+ γ (x)( Ā − B̄C3)+ T̄b(x)γ (x)

− K (x, 0)Q(0)C3 + g1(x)λ(0) = 0 (72)

γ (0) = C3 − λ(0). (73)

Note that the existence of a unique solution F, N ∈ L∞(D),
λ ∈ L∞([0, l(t)]), K , J ∈ L∞(D),γ ∈ L∞([0, l(t)]) is
ensured, once the well-posedness of (60)–(73) on the domain
D0 = {0 ≤ y ≤ x ≤ L}, x ∈ [0, L] is achieved, because the
boundary conditions in (60)–(73) are along the lines y = x
and y = 0 and there are no conditions at the boundary
x = l(t). In order to ensure the existence of a unique solution

of the abovementioned kernel equations, additional artificial
boundary conditions of subelements in N , K are imposed as

N21(L, y) = 0 (74)

K21(L, y) = 0. (75)

The following lemma shows well-posedness of the kernel
equations.

Lemma 1: After adding two additional artificial boundary
conditions for the subelements N21, K21 of kernels N and K
as (74) and (75), the matrix equations (60)–(66) have a unique
solution F, N ∈ L∞(D), and λ ∈ L∞([0, l(t)]) and (67)–(73)
have a unique solution K , J ∈ L∞(D),γ ∈ L∞([0, l(t)]).

Proof: The proof is shown in the Appendix of [29].
With similar derivations, one can show that the inverse trans-
formations are defined as

p(x, t) = α(x, t) −
∫ x

0
K̄ (x, y)α(y, t)dy

−
∫ x

0
J̄ (x, y)β(y, t)dy−γ̄ (x)W (t) (76)

r(x, t) = β(x, t)−
∫ x

0
F̄(x, y)α(y, t)dy

−
∫ x

0
N̄ (x, y)β(y, t)dy−λ̄(x)W (t) (77)

where kernels K̄ (x, y), J̄(x, y), γ̄ (x), F̄(x, y), N̄ (x, y), λ̄(x)
can be proved well-posed similar to Lemma 1.

Once the equation for the kernels are solved, the control
input is obtained as

U(t)=−R(l(t))−1

[
p(l(t), t)−

∫ l(t)

0
F(l(t), y)p(y, t)dy

−
∫ l(t)

0
N(l(t), y)r(y, t)dy−λ(l(t))W (t)

]
(78)

by matching boundary conditions (47) and (58) via (53).
Applying (24)–(28) and (40)–(42), (78) can be expanded and
rewritten as the original states as

U1(t) = − 1

d19(l(t))
√

d6(l(t)

×
[

ut (l(t), t) −
∫ l(t)

0

[
F11(l(t), y)(ut (y, t)

− √
d6(y)ux(y, t))

+ F12(l(t), y)(wt (y, t)− √
d1(y)wx(y, t))

]
dy

−
∫ l(t)

0

[
N11(l(t), y)(ut (y, t)+ √

d6(y)ux(y, t))

+ N12(l(t), y)(wt (y, t)+ √
d1(y)wx(y, t))

]
dy

− λ11(l(t))w(0, t) − λ12(l(t))wt (0, t)

− λ13(l(t))u(0, t) − λ14(l(t))ut (0, t)

]
(79)

U2(t) = − 1

d20(l(t))
√

d1(l(t)

×
[
wt (l(t), t) −

∫ l(t)

0

[
F21(l(t), y)(ut (y, t)

− √
d6(y)ux(y, t))
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+ F22(l(t), y)(wt (y, t)− √
d1(y)wx(y, t))

]
dy

−
∫ l(t)

0

[
N21(l(t), y)(ut (y, t)+ √

d6(y)ux(y, t))

+ N22(l(t), y)(wt (y, t)+ √
d1(y)wx(y, t))

]
dy

− λ21(l(t))w(0, t) − λ22(l(t))wt (0, t)

− λ23(l(t))u(0, t) − λ24(l(t))ut (0, t)

]
(80)

where inserting (22) and (23) to replace ux(l(t), t), wx(l(t), t)
is used. With the abovementioned control laws U1(t),U2(t),
we obtain stability results of the state-feedback closed-loop
system, summarized in the following two theorems.

B. Stability Analysis in the State-Feedback Closed-Loop
System

1) Stability Result of Closed-Loop System: The exponential
stability result of the state-feedback closed-loop system is
shown in the following theorem, which physically means the
vibration energy of the cable, including kinetic energy and
potential energy in two directions, bounded by ξ(‖wt (·, t)‖2 +
‖wx(·, t)‖2 +‖ut(·, t)‖2 +‖ux(·, t)‖2) with ξ > 0, is exponen-
tially convergent to zero, where the decay rate of the vibration
energy is adjustable by the control parameters.

Theorem 1: If initial values (w(x, 0),wt (x, 0)) ∈
H 2(0, L) × H 1(0, L), (u(x, 0), ut (x, 0)) ∈ H 2(0, L) ×
H 1(0, L), the closed-loop system consisting of the plant
(18)–(23) and the state-feedback control law (79) and (80)
is exponentially stable in the sense that there exist positive
constants ϒ1, σ1 such that

�(t) ≤ ϒ1�(0)e−σ1t (81)

where �(t) = (‖wt (·, t)‖2 + ‖wx(·, t)‖2 + ‖ut (·, t)‖2 +
‖ux(·, t)‖2+|w(0, t)|2+|wt(0, t)|2+|u(0, t)|2+|ut(0, t)|2)1/2

.
‖u(·, t)‖2 is a compact notation for

∫ l(t)
0 u(x, t)2dx and | · |

denotes the Euclidean norm. The convergence rate σ1 is
adjustable by the control parameters.

Proof: We start from studying the stability of the target
system (54)–(58). The equivalent stability property between
the target system (54)–(58) and the original system (18)–(23)
is ensured via the definitions (24)–(27) and (40)–(42) and the
backstepping transformations (52) and (53) and (76) and (77).

Consider the following Lyapunov function for the target
system (54)–(58):

V1 =W T (t)P1W (t)+ 1

2

∫ l(t)

0
eδ2xβ(x, t)T Ra Q(x)−1β(x, t)dx

+ 1

2

∫ l(t)

0
e−δ1 xα(x, t)T Rb Q(x)−1α(x, t)dx (82)

where there exists a positive definite matrix P1 = PT
1 being

the solution to the Lyapunov equation P1 Â + ÂT P1 = −Q̂1,
for some Q̂1 = Q̂T

1 > 0. Ra, Rb are diagonal matrices
as Ra = diag{ra1, ra2}, Rb = diag{rb1, rb2}. The positive
parameters ra1, ra2, rb1, rb2, δ1, δ2 are to be chosen later.

According to (82), we have

μ1�(t) ≤ V1(t) ≤ μ2�(t) (83)

with defining �(t) = |W (t)|2 + ‖β(x, t)‖2 + ‖α(x, t)‖2, for
some positive μ1, μ2. Time derivative of V1(t) along (54)–(58)
is obtained as

V̇1 = Ẇ T (t)P1W (t) + W T (t)P1Ẇ (t)

+
∫ l(t)

0
eδ2 xβ(x, t)T Ra Q(x)−1βt (x, t)dx

+
∫ l(t)

0
e−δ1 xα(x, t)T Rb Q(x)−1αt (x, t)dx

+ l̇(t)

2
e−δ1l(t)α(l(t), t)T Rb Q(l(t))−1α(l(t), t)

= W (t)T ( ÂT P1 + P1 Â)W (t) + 4W T (t)P1 B̄β(0, t)

+ l̇(t)

2
e−δ1l(t)α(l(t), t)T Rb Q(l(t))−1α(l(t), t)

+
∫ l(t)

0
eδ2 xβ(x, t)T Ra Q(x)−1T̄a(x)β(x, t)dx

+
∫ l(t)

0
eδ2 xβ(x, t)T Ra Q(x)−1g(x)β(0, t)dx

− 1

2
β(0, t)T Raβ(0, t)− δ2

2

∫ l(t)

0
eδ2 xβ(x, t)T Raβ(x, t)dx

− 1

2
e−δ1l(t)α(l(t), t)T Rbα(l(t), t) + 1

2
α(0, t)T Rbα(0, t)

− δ1

2

∫ l(t)

0
e−δ1 xα(x, t)T Rbα(x, t)dx

+
∫ l(t)

0
e−δ1 xα(x, t)T Rb Q(x)−1 T̄b(x)α(x, t)dx

+
∫ l(t)

0
e−δ1 xα(x, t)T Rb Q(x)−1g1(x)β(0, t)dx . (84)

Applying Young’s inequality and considering the boundedness
of the elements 1/(d1(x))1/2, 1/(d6(x))1/2, ga(x), gb(x) in the
matrices Q(x)−1, g(x), g1(x), there exists ξ > 0 such that the
following inequalities hold:∫ l(t)

0
eδ2 xβ(x, t)T Ra Q(x)−1g(x)β(0, t)dx

≤ ξ

∫ l(t)

0
eδ2xβ(x, t)T Raβ(x, t)dx

+ ξ
∫ l(t)

0
eδ2 Lβ(0, t)T�aβ(0, t)dx (85)

∫ l(t)

0
e−δ1 xα(x, t)T Rb Q(x)−1g1(x)β(0, t)dx

≤ ξ

∫ l(t)

0
e−δ1xα(x, t)T Rbα(x, t)dx

+ ξ
∫ l(t)

0
β(0, t)T�bβ(0, t)dx (86)

where

�a =
[

ra2 0
0 0

]
, �b =

[
rb2 0
0 0

]
.

Inserting (85) and (86) and applying Young’s inequality
into (84), we obtain

V̇1(t)

≤ −1

2
λmin(Q2)|W (t)|2 − β(0, t)T
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×
(

Ra

2
− Rb

2
− 8|P1 B̄1|2
λmin(Q2)

I2 − eδ2 Lξ�a − ξ�b

)
β(0, t)

−
∫ l(t)

0
eδ2 xβ(x, t)T

× Ra

((
δ2

2
− ξ

)
I2 − Q(x)−1T̄a(x)

)
β(x, t)dx

−
∫ l(t)

0
e−δ1 xα(x, t)T

× Rb

((
δ1

2
− ξ

)
I2 − Q(x)−1T̄b(x)

)
α(x, t)dx

− 1

2
e−δ1l(t)α(l(t), t)T Rb(I2 − Q(l(t))−1 l̇(t))α(l(t), t)

(87)

where I2 is a 2 × 2 identity matrix. The parameters
ra1, ra2, rb1.rb2, δ1, δ2 are chosen to satisfy

ra1 > rb1 + 16|P1 B̄1|2
λmin(Q2)

+ 2ra2eδ2 Lξ + 2rb2ξ

ra2 > rb2 + 16|P1 B̄1|2
λmin(Q2)

with sufficiently large δ1, δ2. Note that positive constants
rb1, rb2 can be arbitrary. We know that the elements in the
diagonal matrix Q(l(t))−1l̇(t) are less than 1 by recalling
Assumption 2, and the boundedness of all elements in the diag-
onal matrix Q(x)−1, T̄a(x), T̄b(x) by recalling Assumption 3,
we thus arrive at

V̇1(t) ≤ −η1V1(t) (88)

for some positive η1. It follows that:
V1(t) ≤ V1(0)e−η1t (89)

and then �(t) ≤ (μ2/μ1)�(0)e−η1t by recalling (83).
Now, we have obtained exponential stability in �(t).

Establishing the relationship between the �(t) and the appro-
priate norm of the u(x, t),w(x, t)-system is the key to estab-
lishing exponential stability in original variables. Defining

�(t) = ‖ux(·, t)‖2 + ‖ut (·, t)‖2 + |u(0, t)|2 + |ut(0, t)|2
+ ‖wx(·, t)‖2+‖wt(·, t)‖2+|w(0, t)|2+|wt(0, t)|2 (90)

and recalling (24)–(27), (28)–(42), and (76) and (77),
by applying Cauchy–Schwarz inequality, the following
inequality holds:

θ̄1a�(t) ≤ �(t) ≤ θ̄1b�(t) (91)

for some positive θ̄1a and θ̄1b. Therefore, we have

�(t) ≤ μ2θ̄1b

μ1θ̄1a
�(0)e−η1 t . (92)

Thus, (81) is achieved with ϒ1 = (μ2θ̄1b/μ1θ̄1a)
1/2 and

σ1 = η1/2, where the convergence rate σ1 can be adjusted
by the control parameter κ through affecting λmin(Q̂1). Then,
the proof of Theorem 1 is completed.

2) Exponential Convergence of Control Input: Before
proving the exponential convergence of the control input,
we propose a lemma first which shows the exponential stability
result of the closed-loop system in the sense of H 2 norm.

Lemma 2: For any initial data (w(x, 0),wt (x, 0)) ∈
H 2(0, L) × H 1(0, L), (u(x, 0), ut(x, 0)) ∈ H 2(0, L) ×
H 1(0, L), the exponential stability estimate of the closed-loop
system (u(x, t),w(x, t)) is obtained in the sense that there
exist positive constants ϒ1a and σ1a such that

(‖uxx (·, t)‖2 + ‖wxx (·, t)‖2 + ‖utx (·, t)‖2 + ‖wt x (·, t)‖2)
1
2

≤ ϒ1a

(
‖ux(·, 0)‖2+‖wx(·, 0)‖2+‖ut (·, 0)‖2+‖wt (·, 0)‖2

+‖uxx (·, 0)‖2+‖wxx (·, 0)‖2+‖utx(·, 0)‖2+‖wt x(·, 0)‖2

+|w(0, 0)|2+|wt(0, 0)|2+|u(0, 0)|2+|ut(0, 0)|2
) 1

2

e−σ1at .

Proof: Taking the spatial derivative and the time derivative
of (55), (56), (93), (96), and (97), respectively,

Ẅ (t) = ÂẆ (t)+2B̄Q(0)βx(0, t)+2B̄ T̄a(0)β(0, t)

(93)

αxt (x, t) = −Q(x)αxx (x, t)+(T̄b(x)−Q′(x))αx(x, t)

+ T̄ ′
b(x)α(x, t) (94)

βxt (x, t) = Q(x)βxx (x, t)+ (T̄a(x)+ Q′(x))βx(x, t)

+ T̄ ′
a(x)β(x, t) (95)

−Q(0)αx(0, t) = −Q(0)βx(0, t)− T̄a(0)β(0, t)

− T̄b(0)α(0, t) (96)

βx(l(t), t) = 0 (97)

where (56) and (58) are used. Note that (97) results from
(l̇(t) + Q(l(t)))βx(l(t), t) = 0 where the elements in the
diagonal matrix l̇(t)+Q(l(t)) are identically nonzero by recall-
ing Assumption 2. Define new variables �(x, t) = αx(x, t),
ζ(x, t) = βx(x, t), Z(t) = Ẇ (t). Consider a Lyapunov
function

V2(t) = R1V1(t)+ Z(t)T P1 Z(t)

+ 1

2

∫ l(t)

0
eδ̄1xζ (x, t)T R̄a Q(x)−1ζ (x, t)dx

+ 1

2

∫ l(t)

0
e−δ̄2 x�(x, t)T R̄b Q(x)−1�(x, t)dx

(98)

where R̄a, R̄b are diagonal matrices as R̄a = diag{r̄a1, r̄a2},
R̄b = diag{r̄b1, r̄b2}. r̄a1, r̄a2, r̄b1, r̄b2, δ̄1, δ̄2 and R1 are positive
parameters.

Taking the derivative of (98) along (93)–(97), recalling (87),
determining r̄a1, r̄a2, r̄b1, r̄b2, δ̄1, δ̄2 through a similar process
as (84)–(89), and choosing large enough positive constant R1,
we arrive at V̇2(t) ≤ −η2V2(t) for some positive η2.

Recalling backstepping transformations (76) and (77),
we have ‖px(·, t)‖2 + ‖rx(·, t)‖2 ≤ ϒ1b(W (0)2 + ‖p(·, 0)‖2 +
‖r(·, 0)‖2 + ‖px(·, 0)‖2 + ‖rx (·, 0)‖2)e−η2t for some positive
ϒ1b. Applying (24)–(27), (40) and (41), the proof of Lemma 2
is completed.
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Theorem 2: In the closed-loop system, the state-feedback
controller U1(t), U2(t) (79) and (80) are bounded and expo-
nentially convergent to zero in the sense that there exist
positive constants σ2 and ϒ2 such that

|U1(t)|2 + |U2(t)|2

≤ ϒ2

(
‖ux(·, 0)‖2 + ‖wx(·, 0)‖2 + ‖ut (·, 0)‖2

+ ‖wt (·, 0)‖2+‖uxx (·, 0)‖2+‖wxx (·, 0)‖2+‖utx(·, 0)‖2

+ ‖wt x (·, 0)‖2 + |w(0, 0)|2 + |wt(0, 0)|2

+ |u(0, 0)|2 + |ut(0, 0)|2
)

e−σ2t . (99)

Proof: Considering (78) and the exponential stability
result in Theorem 1, we know once p(l(t), t) = [ut(l(t), t)−
(d6(l(t)))1/2ux(l(t), t), wt (l(t), t) − (d1(l(t)))1/2wx(l(t), t)]T

is made sure to be exponentially convergent zero in the sense
of |p(l(t), t)|2, the exponential convergence of the control
input is obtained. Applying Cauchy–Schwarz inequality and
recalling (21) and (22), we obtain

|p(l(t), t)| ≤ 2|p(0, t)| + 2
√

L‖px(·, t)‖
≤ 4|r(0, t)| + 4|C3W (t)| + 2

√
L‖px(·, t)‖

≤ 8|r(l(t), t)| + 8
√

L‖rx(·, t)‖
+ 4|C3W (t)| + 2

√
L‖px(·, t)‖. (100)

Recalling (58), (77), and the exponential convergence of
‖α(·, t)‖2, ‖β(·, t)‖2, |W (t)|2 proved in Theorem 1, we have
|r(l(t), t)| is exponentially convergent to zero. Recalling
Lemma 2, we thus have that |p(l(t), t)| is exponen-
tially convergent to zero. The proof of Theorem 2 is
completed.

IV. OBSERVER DESIGN

A. Observer Structure

Consider the sensors are only placed at the actuated
boundary, an observer should be designed to estimate the
in-domain and uncontrolled boundary states required in the
state-feedback control laws (79) and (80). The available
measurements are ut (l(t), t), wt(l(t), t), i.e., p(l(t), t) being
known through a convertor as

p(l(t), t) =
[
ut(l(t), t) − √

d6(l(t))d19(l(t))U1(t),

wt (l(t), t)− √
d1(l(t))d20(l(t))U2(t)

]
(101)

recalling (22), (23), (24), (27), and (40). Using the known
signal p(l(t), t), the observer for the coupled wave PDE plant
(18)–(23) is constructed as

ŵt(x, t) = 1

2
(ẑ(x, t)+ v̂(x, t)) (102)

ŵx(x, t) = 1

2
√

d1(x)
(ẑ(x, t)− v̂(x, t)) (103)

ût(x, t) = 1

2
(k̂(x, t)+ ŷ(x, t)) (104)

ûx(x, t) = 1

2
√

d6(x)
(k̂(x, t)− ŷ(x, t)) (105)

p̂t(x, t)+ Q(x) p̂x(x, t)

= Ta(x)r̂(x, t)+ Tb(x) p̂(x, t)

+�1(x, t)(p(l(t), t) − p̂(l(t), t)) (106)

r̂t (x, t)− Q(x)r̂x(x, t)

= Ta(x)r̂(x, t)+ Tb(x) p̂(x, t)

+�2(x, t)(p(l(t), t) − p̂(l(t), t)) (107)

p̂(0, t) = C3Ŵ (t)− r̂(0, t) (108)
˙̂W (t) = ( Ā − B̄C3)Ŵ (t)+ 2B̄r̂(0, t)

+�3(t)(p(l(t), t) − p̂(l(t), t)) (109)

r̂(l(t), t) = R(l(t))U(t) + p(l(t), t) (110)

where p̂ = [ŷ(x, t), v̂(x, t)]T , r̂ = [k̂(x, t), ẑ(x, t)]T , Ŵ (t) =
[X̂(t), Ŷ (t)]T = [ŵ(0, t), ŵt (0, t), û(0, t), ût (0, t)]T .

Note that the observer consists of two parts: 1) (106)–(110)
in the sense of a copy of plant (43)–(47) plus output injections
is built to estimate p(x, t), r(x, t) and 2) once p(x, t), r(x, t)
are estimated successfully by (106)–(110), the estimations
of the original plant are straightly obtained as (102)–(105)
considering Riemann transformations (24)–(27).

Next, the observer gains �1(x, t), �2(x, t), and �3(t) will
be determined to achieve the exponential stability of the
observer error system which can be seen in the next subsection.
A difference from the traditional ones should be noted that �1,
�2 not only depend on the spatial variable x but also depend
on time t because of the time-varying domain.

B. Observer Error System

The observation problem is essentially to ensure the
observer errors (differences between the estimated and real
states) are reduced to zero, by defining adequate observer
gains. Denote the observer errors as

w̃t(x, t) = wt(x, t)− ŵt (x, t) (111)

w̃x(x, t) = wx(x, t)− ŵx(x, t) (112)

ũt(x, t) = ut(x, t)− ût (x, t) (113)

ũx(x, t) = ux(x, t)− ûx(x, t) (114)

W̃ (x, t) = W (x, t)− Ŵ (t) = [X (t),Y (t)]−[X̂(t), Ŷ (t)]
= [w(0, t),wt (0, t), u(0, t), ut (0, t)]T

− [ŵ(0, t), ŵt (0, t), û(0, t), ût (0, t)]T

= [X̃(t), Ỹ (t)]
= [w̃(0, t), w̃t (0, t), ũ(0, t), ũt (0, t)]T (115)

p̃(x, t) = p(x, t)− p̂(x, t) = [ỹ(x, t), ṽ(x, t)] (116)

r̃(x, t) = r(x, t)− r̂(x, t) = [k̃(x, t), z̃(x, t)]. (117)

Recalling (43)–(47), (24)–(27), and (102)–(110), the resulting
observer error dynamics are given by

w̃t(x, t) = 1

2
(z̃(x, t)+ ṽ(x, t)) (118)

w̃x(x, t) = 1

2
√

d1(x)
(z̃(x, t)− ṽ(x, t)) (119)

ũt(x, t) = 1

2
(k̃(x, t)+ ỹ(x, t)) (120)

ũx(x, t) = 1

2
√

d6(x)
(k̃(x, t)− ỹ(x, t)) (121)
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p̃t(x, t)+ Q(x) p̃x(x, t)

= Ta(x)r̃(x, t)+ Tb(x) p̃(x, t)

+�1(x, t) p̃(l(t), t) (122)

r̃t (x, t)− Q(x)r̃x(x, t)

= Ta(x)r̃(x, t)+ Tb(x) p̃(x, t)

+�2(x, t) p̃(l(t), t) (123)

p̃(0, t) = C3W̃ (t)− r̃(0, t) (124)
˙̃W (t) = ( Ā − B̄C3)W̃ (t)+ 2B̄r̃(0, t) + �3(t) p̃(l(t), t)

(125)

r̃(l(t), t) = 0 (126)

where the subsystem (122)–(126) describing the dynamics
of the observer error of the system (43)–(47) determines
the observer error of the plant (18)–(23) via (118)–(121).
Therefore, the exponential stability of (122)–(126) is the core
to make sure the proposed observer can be exponentially
convergent to the actual states of the original plant (18)–(23).

C. Observer Backstepping Design

To find the observer gains �1(x, t), �2(x, t), �3(t) that
guarantee that (122)–(126) is exponentially stable, we use a
transformation to map (122)–(126) to a target observer error
system whose exponential stability result is straightforward to
obtain.

The transformation is introduced as

p̃(x, t) = α̃(x, t)−
∫ l(t)

x
ϕ̄(x, y)α̃(y, t)dy (127)

r̃(x, t) = β̃(x, t)−
∫ l(t)

x
ψ̄(x, y)α̃(y, t)dy (128)

W̃ (t) = S̃(t)+
∫ l(t)

0
K̄ (y)α̃(y, t)dy (129)

where kernels ϕ̄(x, y) = {ϕ̄i j(x, y)}1≤i, j≤2, ψ̄(x, y) =
{ψ̄i j(x, y)}1≤i, j≤2 on a triangular domain D1 = {0 ≤ x ≤ y ≤
l(t)} and K̄ (y) = {K̄i j(y)}1≤i≤4,1≤ j≤2 are to be determined.
The target observer error system is set up as

α̃t (x, t)+ Q(x)α̃x(x, t)

= Ta(x)β̃(x, t)+ T̄b(x)α̃(x, t)

+
∫ l(t)

x
M̄(x, y)β̃(y, t)dy (130)

β̃t(x, t)− Q(x)β̃x(x, t)

=
∫ l(t)

x
N̄(x, y)β̃(y, t)dy

+ Ta(x)β̃(x, t) (131)

α̃(0, t) = C3 S̃(t)− β̃(0, t)+
∫ l(t)

0
H (y)α̃(y, t)dy (132)

β̃(l(t), t) = 0 (133)

˙̃S(t) = ǍS̃(t)+ Ě β̃(0, t)+
∫ l(t)

0
G(y)β̃(y, t)dy (134)

where Ǎ = Ā − B̄C3 − L0C3 is a Hurwitz matrix by choosing
L0 = {L0i j}1≤i≤4,1≤ j≤2 recalling Assumption 5, and M̄(x, y)

and N̄(x, y) satisfy

M̄(x, y) =
∫ y

x
ϕ̄(x, z)M̄(z, y)dz + ϕ̄(x, y)Ta(y) (135)

N̄ (x, y) =
∫ y

x
ψ̄(x, z)M̄(z, y)dz + ψ̄(x, y)Ta(y). (136)

Note that H (y) = {hi j(y)}1≤i, j≤2 in (132) is a strict lower
triangular matrix as

H (y) =
(

0 0
ψ̄2,1(0, y)+ ϕ̄2,1(0, y)+ K̄21(y) 0

)
(137)

and G(y) = {Gi j(y)}1≤i≤4,1≤ j≤2, Ě = {Ěi j}1≤i≤4,1≤ j≤2

in (134) are equal to −K̄ (0, y)T̄a(y) − ∫ y
0 K̄ (0, z)M̄(z, y)dz

and L0 + 2B̄, respectively. The exponential stability of the
target system (130)–(134) will be seen in Lemma 4.

By matching (122)–(126) and (130)–(134) through the
transformation (127)–(129), the conditions on the kernels
in (127)–(129) and observer gains in (106), (107), and (109)
are obtained as follows. Kernels ϕ̄(x, y), ψ̄(x, y), and K̄ (y)
should satisfy the matrix equations

−ϕ̄y(x, y)Q(y)− Q(x)ϕ̄x(x, y)− ϕ̄(x, y)Q′(y)
+ Ta(x)ψ̄(x, y)+ Tb(x)ϕ̄(x, y)− ϕ̄(x, y)T̄b(y) = 0

(138)

−ψ̄y(x, y)Q(y)+ Q(x)ψ̄x(x, y)− ψ̄(x, y)Q′(y)
+ Ta(x)ψ̄(x, y)− ψ̄(x, y)T̄b(y)+ Tb(x)ϕ̄(x, y) = 0

(139)

Q(x)ϕ̄(x, x)− ϕ̄(x, x)Q(x) = Tb(x)− T̄b(x) (140)

Q(x)ψ̄(x, x)+ ψ̄(x, x)Q(x) = −Tb(x) (141)

ψ̄(0, y)+ ϕ̄(0, y)+ C3 K̄ (y) = H (y) (142)

− K̄ ′(y)Q(y)+ ( Ā − B̄C3 − L0C3)K̄ (y)

− K̄ (y)[Q′(y)+ T̄b(y)]
− L0ϕ̄(0, y)− (2B̄ + L0)ψ̄(0, y) = 0 (143)

K̄ (0) = L0 Q(0)−1 (144)

and the observe gains are obtained as

�1(x, t) = l̇(t)ϕ̄(x, l(t))− ϕ̄(x, l(t))Q(l(t)) (145)

�2(x, t) = l̇(t)ψ̄(x, l(t))− ψ̄(x, l(t))Q(l(t)) (146)

�3(t) = l̇(t)K̄ (l(t))− K̄ (l(t))Q(l(t)). (147)

Lemma 3: After adding an additional artificial boundary
condition for the element ϕ̄21 in the matrix ϕ̄ as ϕ̄21(x, L) = 0
(the reason of defining the artificial boundary condition along
y = L is similar to the illustration before Lemma 1), the matrix
equations (138)–(144) have a unique solution ϕ̄, ψ̄ ∈ L∞(D1),
K̄ ∈ L∞([0, l(t)]).

Proof: After swapping the positions of arguments
as B.9 and B.10 in [2], i.e., changing the domain D1

to D, (138)–(144) have the analogous form with kernels
F(x, y), N(x, y), λ(y) (60)–(66). Similar to the proof of
[29, Lemma 1], Lemma 3 is obtained.
Following similar steps as mentioned earlier, the inverse
transformation of (127)–(129) can be determined as:

α̃(x, t) = p̃(x, t)−
∫ l(t)

x
ϕ̌(x, y) p̃(y, t)dy (148)
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β̃(x, t) = r̃(x, t)−
∫ l(t)

x
ψ̌(x, y) p̃(y, t)dy (149)

S̃(t) = W̃ (t)+
∫ l(t)

0
Ǩ (y)r̃(y, t)dy (150)

where ϕ̌(x, y) ∈ R2×2, ψ̌(x, y) ∈ R2×2, and Ǩ (y) ∈ R4×2 are
kernels on D1 and 0 ≤ y ≤ l(t), respectively.

D. Stability Analysis of Observer Error System

Before showing the performance of the proposed observer
on tracking the actual states in the original plant (18)–(23)
in the next theorem, the stability result of the observer error
subsystem (122)–(126) which dominates the observer errors of
the original plant (18)–(23) is given in the following lemma.

Lemma 4: Consider the observer error subsystem
(122)–(126), there exist positive constants ϒ3, σ3 such
that

�e(t) ≤ ϒ3�e(0)e−σ3t (151)

where �e(t) = (‖ p̃(·, t)‖2 + ‖r̃(·, t)‖2 + |W̃ (t)|2)1/2.
Proof: Expanding (130)–(134) as α̃ = [α̃1, α̃2]T , β̃ =

[β̃1, β̃2]T , we obtain

α̃i t (x, t)+ Qi (x)α̃i x(x, t)

=
2∑

j=1

Tai j(x)β̃ j(x, t)

+ T̄bi(x)α̃i (x, t)

+
∫ l(t)

x

2∑
j=1

M̄i j (x, y)β̃ j(y, t)dy (152)

β̃i t(x, t)− Qi (x)β̃i x(x, t)

=
∫ l(t)

x

2∑
j=1

N̄i j (x, y)β̃ j(y, t)dy

+
2∑

j=1

Tai j(x)β̃ j(x, t) (153)

α̃i (0, t) = C3 S̃(t)− β̃i (0, t)+ (i − 1)

×
∫ l(t)

0
h21(y)α̃1(y, t)dy, (154)

β̃i(l(t), t) = 0 (155)

for i = 1, 2, and S̃(t) is governed by

˙̃S(t) = ǍS̃(t)+ Ě[β̃1(0, t), β̃2(0, t)]T

+
∫ l(t)

0
G(y)[β̃1(y, t), β̃2(y, t)]T dy. (156)

In (152)–(156), β̃i (·, t) are independent and β̃i(·, t) ≡ 0 after a
finite time because of (155). Thus, S̃(t) is exponentially con-
vergent to zero because Ǎ is Hurwitz. α̃1(·, t) are exponentially
convergent to zero because of the exponential convergence of
α̃1(0, t) considering (154) for i = 1. α̃1(·, t) flow into α̃2(0, t)
through the boundary (154), where exponential convergence
of α̃2(0, t) also can be obtained for i = 2 because all signals
at the right-hand side of the equal sign are exponentially

convergent to zero. It follows that α̃2(·, t) are exponentially
convergent to zero as well.

The exponential stability result would be seen more clearly
by using the following Lyapunov function as:
Ve(t)

= řb1

2

∫ l(t)

0
e−δ̌1x α̃1(x, t)T Q1(x)

−1α̃1(x, t)dx

+ řa1

2

∫ l(t)

0
eδ̌2x β̃1(x, t)T Q1(x)

−1β̃1(x, t)dx

+ řa2

2

∫ l(t)

0
eδ̌2 x β̃2(x, t)T Q2(x)

−1β̃2(x, t)dx + S̃(t)T P2 S̃(t)

+ řb2

2

∫ l(t)

0
e−δ̌1x α̃2(x, t)T Q2(x)

−1α̃2(x, t)dx (157)

where a positive definite matrix P2 = PT
2 is the solution to

the Lyapunov equation P2 Ǎ + ǍT P2 = −Q̂2, for some Q̂2 =
Q̂T

2 > 0, and řa1, řa2, řb1, řb2, δ̌1, δ̌2 are positive constants.
The following inequality holds μe1�e(t) ≤ Ve(t) ≤ μe2�e(t)
for some positive μe1, μe2, where �e(t) = ‖α̃(·, t)‖2 +
‖β̃(·, t)‖2 + |S̃(t)|2. Note that ‖α̃(·, t)‖2 = ∫ l(t)

0 α̃1(·, t)2dx +∫ l(t)
0 α̃2(·, t)2dx .

Taking the derivative of (157) along (152)–(156), choosing
řa1, řa2, řb1, řb2, δ̌1, δ̌2 as a similar process in (84)–(89), we can
obtain V̇e(t) ≤ −ηeVe(t) for some positive ηe which is
associated with the choice of L0. It follows that the exponential
stability result in the sense of

(‖α̃(x, t)‖2 + ‖β̃(x, t)‖2 +
|S̃(t)|2)1/2 ≤ ξe

(‖α̃(x, 0)‖2 + ‖β̃(x, 0)‖2 + |S̃(0)|2)1/2
e−ηe t ,

for some positive ξe and ηe. Recalling the direct and inverse
backstepping transformations (127)–(129), (148)–(150), and
applying Cauchy-Schwarz inequality, the proof of Lemma 4
is completed.

Applying the exponential stability result of the observer
error subsystem (122)–(126) in Lemma 4 and recalling the
relationships (118)–(121), we obtain the following theorem
about the performance of the observer on tracking the actual
states in the original plant (18)–(23).

Theorem 3: Considering the observer error system
(118)–(126) with the observer gains �1(x, t) (145),
�2(x, t) (146), and �3(t) (147), for any initial
data (ũ(x, 0), ũt (x, 0)) ∈ H 2(0, L) × H 1(0, L),
(w̃(x, 0), w̃t (x, 0)) ∈ H 2(0, L) × H 1(0, L), there exist
positive constants ϒ4, σ4 such that

�a(t) ≤ ϒ4�a(0)e−σ4t (158)

where �a(t) = (‖ũt (·, t)‖2 + ‖ũx(·, t)‖2 + ‖w̃t (·, t)‖2 +
‖w̃x(·, t)‖2 + w̃(0, t)2 + w̃t(0, t)2 + ũ(0, t)2 + ũt (0, t)2

)1/2
.

It means the observer states in (102)–(110) can be exponen-
tially convergent to the actual values in (18)–(23) according
to (111)–(114).

Proof: Recalling Lemma 4 and (115)–(117), the following
inequality holds �b(t) ≤ ϒ4a�b(0)e−σ4a t for some positive
constants ϒ4a, σ4a , where �b(t) = (‖ỹ(·, t)‖2 + ‖ṽ(·, t)‖2 +
‖k̃(·, t)‖2 + ‖z̃(·, t)‖2 + |X̃(t)|2 + |Ỹ (t)|2)1/2.

According to (118)–(121), whose inverse transforma-
tion, where ũt(·, t), ũx (·, t), w̃t(·, t), w̃x (·, t) are repre-
sented by z̃(·, t), ṽ(·, t), k̃(·, t), ỹ(·, t), is straightforward
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to obtain, the proof of Theorem 3 is then completed
recalling (115).

V. OUTPUT-FEEDBACK CONTROLLER AND

STABILITY ANALYSIS

The output-feedback controller results from combining the
state-feedback controller in Section III and the observer
in Section IV. After inserting observer states into the
state-feedback controller (79) and (80) to replace the unmea-
surable states, the controller U1(t),U2(t) in (22) and (23) are
taken as the output-feedback form as Uo1(t),Uo2(t)

Uo1(t) = − 1

d19(l(t))
√

d6(l(t))

×
[

ut (l(t), t) −
∫ l(t)

0

[
F11(l(t), y)(ût (y, t)

− √
d6(y)ûx(y, t))

+ F12(l(t), y)(ŵt (y, t)− √
d1(y)ŵx(y, t))

]
dy

−
∫ l(t)

0

[
N11(l(t), y)(ût (y, t)+ √

d6(y)ûx(y, t))

+ N12(l(t), y)(ŵt (y, t)+ √
d1(y)ŵx(y, t))

]
dy

− λ11(l(t))ŵ(0, t) − λ12(l(t))ŵt (0, t)

− λ13(l(t))û(0, t)− λ14(l(t))ût (0, t)

]
(159)

Uo2(t) = − 1

d20(l(t))
√

d1(l(t)

×
[
wt (l(t), t) −

∫ l(t)

0

[
F21(l(t), y)(ût (y, t)

− √
d6(y)ûx(y, t))

+ F22(l(t), y)(ŵt (y, t)− √
d1(y)ŵx(y, t))

]
dy

−
∫ l(t)

0

[
N21(l(t), y)(ût (y, t)+ √

d6(y)ûx(y, t))

+ N22(l(t), y)(ŵt (y, t)+ √
d1(y)ŵx(y, t))

]
dy

− λ21(l(t))ŵ(0, t) − λ22(l(t))ŵt (0, t)

− λ23(l(t))û(0, t)− λ24(l(t))ût (0, t)

]
. (160)

The diagram of the output-feedback closed-loop system is
shown in Fig. 4. It should be noted that Uo1(t), Uo2(t) are
implemented based on the boundary measurements ut (l(t), t),
wt (l(t), t) mentioned in Section II. To be exact, ut (l(t), t),
wt (l(t), t) directly act as the first terms of (159) and
(160), and also are used to obtain the solutions of the
observer (102)–(110) which are required in the remaining
terms in (159) and (160) through a convertor (101). Note
that in the practical application of the DCV, l(t), i.e., the
time-varying length of the cable, can be obtained by the
product of the radius and angular displacement of the winch
on which the cable winds round.

The following theorem shows the exponential stability result
of the output-feedback closed-loop system.

Theorem 4: Considering the closed-loop system consist-
ing of the plant (18)–(23), the observer (102)–(110) and
the output-feedback controller (159) and (160), for ini-
tial values (w(x, 0),wt (x, 0)) ∈ H 2(0, L) × H 1(0, L),

Fig. 4. Diagram of the output-feedback closed-loop system.

(u(x, 0), ut(x, 0)) ∈ H 2(0, L) × H 1(0, L), we obtain the
following.

1) There exist positive constants ϒ5 and σ5 such that

(�(t) + �̂(t))1/2 ≤ ϒ5(�(0)+ �̂(0))1/2e−σ5t (161)

where �(t) is given in (90) and �̂(t) is defined as

�̂(t) = ‖ûx(·, t)‖2 + ‖ût(·, t)‖2 + |û(0, t)|2 + |ût(0, t)|2
+ ‖ŵx(·, t)‖2 + ‖ŵt(·, t)‖2 +|ŵ(0, t)|2+|ŵt(0, t)|2.

2) The output-feedback controllers (159) and (160) are
bounded and exponentially convergent to zero.

Proof: The output-feedback controller (159) and (160)
can be written as

[Uo1(t),Uo2(t)]T = [Us f 1(t),Us f 2(t)]T + δ̃(t) (162)

considering (111)–(115), where Us f 1(t),Us f 2(t) are the
state-feedback form presented as (79) and (80), and δ̃(t) ∈
R2×1 is

δ̃(t) = 2R(l(t))−1

×
[ ∫ l(t)

0
F(l(t), y)[ũt(y, t)− √

d6(y)ũx(y, t),

w̃t (y, t)− √
d1(y)w̃x(y, t)]T dy

+
∫ l(t)

0
N(l(t), y)[ũt (y, t)+ √

d6(y)ũx(y, t),

w̃t (y, t)+ √
d1(y)w̃x(y, t)]T dy

+ λ(l(t))[w̃(0, t), w̃t (0, t), ũ(0, t), ũt (0, t)]T

]
.

(163)

Applying the output-feedback controller (162) into the plant
(18)–(23), i.e., U1(t) = U1o(t), U2(t) = U2o(t), recalling The-
orems 1 and 3, together with (111)–(115), we achieve (161),
i.e., property 1) in Theorem 4. Moreover, applying Theorem 2
which shows the state-feedback controllers [Us f 1(t),Us f 2(t)]T

are exponentially convergent to zero and Theorem 3 which
guarantees the exponential convergence to zero of δ̃(t) (163),
boundedness and exponential convergence of the output feed-
back control input are obtained according to (162), i.e., the
property 2) of Theorem 4. Therefore, the proof of Theorem 4
is completed.
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Fig. 5. Descending trajectory and velocity, i.e., the time-varying cable length
l(t) and the changing rate l̇(t).

VI. SIMULATION TEST ON VIBRATION

SUPPRESSION OF DCV

The simulation is conducted based on the linear
model (9)–(14) and actual nonlinear model (1)–(6) with
unmodeled disturbances, respectively, where the first one is to
verify the abovementioned theoretical results and the second
one is to illustrate the effectiveness in the application of
vibration control of DCV. Note that the time-varying domain
plant, with predetermined time-varying functions l(t) and
l̇(t) shown in Fig. 5, is converted to the one on the fixed
domain ι = [0, 1] with time-varying coefficients related to
l(t), l̇(t), l̈(t) via introducing

ι = x

l(t)
(164)

i.e., representing u(x, t) by u(ι, t) as

ux(x, t) = 1

l(t)
uι(ι, t), uxx (x, t) = 1

l(t)2
uιι(ι, t) (165)

ut(x, t) = ut(ι, t) − l̇(t)ι

l(t)
uι(ι, t) (166)

utt (x, t) = utt (ι, t)− 2l̇(t)ι

l(t)
uιt (ι, t)− l̇(t)2ι2

l(t)2
uιι(ι, t)

− (l(t)l̈(t)− 2l̈(t)2)ι

l(t)2
uι(ι, t) (167)

and then the simulation is conducted based on the finite
difference method with time step and space step as 0.001 and
0.05 respectively. The observer (102)–(110) is solved in the
same way, and the following equations are used to obtain û, ŵ
from k̂, ŷ, ẑ, v̂:

û(ι, t) =
∫ ι

0

1

2
√

d6(ῑ)
(k̂(ῑ, t)− ŷ(ῑ, t))d ῑ+ C̄1Ŵ (t)

ŵ(ι, t) =
∫ ι

0

1

2
√

d1(ῑ)
(ẑ(ῑ, t)− v̂(ῑ, t))d ῑ+ C̄2Ŵ (t)

according to (102)–(105) and (115), where C̄1 = [0, 0, 1, 0]
and C̄2 = [1, 0, 0, 0].

The initial conditions are defined according to the steady
state, as ux(·, 0) = ε̄(·), ut (·, 0) = 0 and wx(·, 0) = −φ̄(·),
wt (·, 0) = 0. With defining u(0, 0) = 0 and w(l(0), 0) =
0, the initial conditions of (9)–(14) can thus be defined
completely in the numerical calculation adopting the finite
difference method. All initial conditions k̂(·, 0), ŷ(·, 0),
ẑ(·, 0), v̂(·, 0), Ŵ (0) of the observer (102)–(110) are set as
zero.

A. Linear Model

1) System Coefficients: Matching (18)–(23) with (9)–(14),
we have the specific expressions of the coefficients
in (18)–(23) as

d1(x) =
3
2 E Aaφ̄(x)2 + T (x)

mc
(168)

d2(x) = E Aa ε̄
′(x)+ ρg

mc
, d3 = −E Aaφ̄

′(x)
mc

(169)

d4 = −cv
mc

, d5 = 0, d6 = E Aa

mc

d7(x) = −E Aaφ̄
′(x)

mc
(170)

d8 = d9 = 0, d10 = −cu

mc
, d11 = −cw

ML

d12 = −E Aaφ̄(0)2

2ML
(171)

d13 = 0, d14 = −E Aaφ̄(0)

ML
, d15 = −ch

ML

d16 = −E Aa

ML
(172)

d17 = 0, d18 = E Aaφ̄(0)

2ML
, d19 = 1

E Aa
(173)

d20(l(t)) = 1

E Aa ε̄(l(t))+ E Aa
2 φ̄(l(t))2 + T (l(t))

(174)

where T (x), ε̄(x), and φ̄(x) are given in (7), (8), and (17),
respectively, and the values of the physical parameters are
shown in Table III. x in (168)–(174) can be represented by
ι via (164).

2) Controller Parameters: Apply the proposed controllers
(159) and (160) into (9)–(14), where the approximate solution
of the kernel equations (60)–(66) is also solved by the finite
difference method on a fixed triangular domain D0 = {0 ≤
y ≤ x ≤ L}, and then extract F(l(t), y), N(l(t), y) which
would be used in the controller. The control parameters κ are
chosen as[

κ11 κ12 κ13 κ14

κ21 κ22 κ23 κ24

]
=

[
0.8 1.2 4.5 6
2.5 3 1.5 2

]
× 103

(175)

which determines the kernel λ(x) used in the controllers. The
same process is used to obtain ϕ̄(x, l(t)), ψ̄(x, l(t)) used in
the observer gains (145) and (146), and all elements in L0 are
defined as 1.

3) Simulation Results: It can be seen from Fig. 6 that the
large lateral vibrations whose oscillation range is up to 10 m,
persist in the whole operation time 120 s in the case of without
control. Even though the longitudinal vibrations in Fig. 7 are
decaying because of the material damping coefficient cu of
cable in Table III, the longitudinal vibration at the top of the
cable (ι = 1 in Fig. 6) is excessive and reduced slowly because
this point bears the whole mass of the cable and payload
resulting in large elastic deflections. Applying the proposed
output-feedback two-directional vibration control forces at the
ship-mounted crane, it is shown in Fig. 8 that the longitudinal
vibrations are suppressed very fast, and the lateral vibrations
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Fig. 6. Responses of lateral vibrations w(x, t) without control.

Fig. 7. Responses of longitudinal vibrations u(x, t) without control.

Fig. 8. Closed-loop responses of longitudinal vibrations u(x, t).

Fig. 9. Closed-loop responses of lateral vibrations w(x, t).

also decay with a satisfied decay rate according to Fig. 9. The
output-feedback control forces at the ship-mounted crane are
shown in Fig. 10, where the states of the proposed observer
are used. The performance of the observer on tracking the
actual states can be seen in Figs. 11 and 12, which show the
observer errors of both lateral and longitudinal vibrations are
convergent to zero.

B. Actual Nonlinear Model With Ocean Current Disturbances

In the simulation, the nonlinear model (1)–(6) is generated
via replacing ε̄(·), φ̄(·) by ux(·, t) and −wx(·, t) in the linear
model (9)–(14), respectively. Note that the time step and space
step are changed to 0.0005 and 0.1, respectively, in the finite

Fig. 10. Control forces U1(t) and U2(t).

Fig. 11. Observer error of lateral vibrations w̃(x, t).

Fig. 12. Observer error of longitudinal vibrations ũ(x, t).

difference method to ensure the existence of the numerical
solution.

In practice, ocean current disturbances would act as external
lateral oscillating drag forces f (ι, t) on the cable. In the
simulation, f (ι, t) which is added in [29, Eqs. (12) and (14)]
converted to a fixed domain as mentioned earlier are defined
as follows. Consider the time-varying ocean surface cur-
rent velocity P(t) modeled by a first-order Gauss–Markov
process [14]: Ṗ(t) + μP(t) = G(t), where G(t) is Gaussian
white noise and Pmin ≤ P(t) ≤ Pmax with constants Pmin, Pmax

and μ being chosen as 1.6 ms−1, 2.4 ms−1 and 0 [15]. f (ι, t)
can then be given as [15]

f (ι, t)=(0.9ι+0.1)
1

2
ρsCd P(t)2 RD AD cos

(
4π

St P(t)

RD
t+ς

)

where 0.9ι + 0.1 means the full disturbance load is applied
at the top of the cable, i.e., the ocean surface, and linearly
declines to its 0.1 at the bottom of the cable, i.e., the payload.
Cd = 1 denotes the drag coefficient and ς = π is the phase
angle. AD = 400 denotes the amplitude of the oscillating drag
force, St = 0.2 being the Strouhal number [13]. The ocean
disturbances f used in the simulation are shown in Fig. 13.

The control parameters κ11, κ12, κ13, κ14 and κ21, κ22, κ23, κ24

are increased to twice and ten times of those in (175), respec-
tively, considering the robust to the unmodeled disturbances.
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Fig. 13. Lateral oscillations drug forces from ocean current disturbances.

Fig. 14. Closed-loop responses of longitudinal vibrations u(x, t) in the actual
nonlinear model with unmodeled disturbances.

Fig. 15. Closed-loop responses of lateral vibrations w(x, t) in the actual
nonlinear model with unmodeled disturbances.

Fig. 16. Observer errors ũ(·, t)+ w̃(·, t) in the actual nonlinear model with
unmodeled disturbances.

The observer parameters are kept the same with those in
Section VI-A. By applying the proposed output-feedback
controller into the actual nonlinear model with the ocean
current disturbances, it is shown in Figs. 14 and 15 that the
longitudinal vibrations and lateral vibrations are reduced as
time goes on. From Fig. 16, we know that the observer errors
are convergent to a small range around zero. Simulation results
in Section VI-B illustrate the effectiveness of the proposed
control design applied into vibration suppression of DCV,
where the output-feedback control inputs in this actual model
are shown in Fig. 17.

Fig. 17. Control inputs in the actual nonlinear model.

VII. CONCLUSION AND FUTURE WORK

This work is motivated by a practical application of
longitudinal-lateral vibration suppression for a deep-sea con-
struction vessel which is used to install oil drilling equipment
at the designated locations on the seafloor. The vibration
dynamics of the DCV are derived using extended Hamilton’s
principle resulting in a nonlinear wave PDE model, which is
then linearized around the steady state to generate a linear
model used in control design. The obtained specific model
of the DCV is represented as a more general coupled wave
PDE plant. Through Riemann transformations, the plant is
converted to a 4 × 4 coupled heterodirectional hyperbolic
PDE-ODE system characterized by spatially varying coef-
ficients and on a time-varying domain, based on which
the controller and observer designs are conducted via the
backstepping method. The exponential stability results of the
observer error system and the output-feedback closed-loop
system, boundedness and exponential convergence of the con-
trol inputs, are proved by Lyapunov analysis. The simulation
test is conducted based on the both approximated linear
model and actual nonlinear model to support the obtained
theoretical results and verify that the proposed ship-mounted
crane control forces can effectively suppress the undesired
longitudinal-lateral vibrations in DCV.

The control design is on the basis of a completely known
model, but some uncertainties, such as unknown model para-
meters, may appear in practice. In future work, the model
uncertainties will be considered and some adaptive control
technologies should be incorporated into the control design.
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