
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 70, NO. 10, OCTOBER 2025 7055

Output-Positive Adaptive Control of Hyperbolic PDE-ODE Cascades
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Abstract—In this article, we propose a new adaptive control bar-
rier function (aCBF) method to design the output-positive adaptive
control law for a hyperbolic PDE-ODE cascade with parametric
uncertainties. This method employs the recent adaptive control ap-
proach with batch least-squares identification (BaLSI, pronounced
“ballsy”) that completes perfect parameter identification in finite
time and offers a previously unforeseen advantage in safe control
design with aCBF, which we elucidate in this article. Since the
true challenge is exhibited for CBF of a high relative degree, we
undertake a control design in this article for a class of systems that
possess a particularly extreme relative degree: 2 × 2 hyperbolic
PDEs sandwiched by a strict-feedback nonlinear ODE and a linear
ODE, where the unknown coefficients are associated with the PDE
in-domain coupling terms and with the input signal of the distal
ODE. The designed output-positive adaptive controller guarantees
the positivity of the output signal that is the furthermost state from
the control input as well as the exponential regulation of the overall
plant state to zero. The effectiveness of the proposed method is
illustrated by numerical simulation.

Index Terms—Adaptive control, backstepping, control barrier
function, hyperbolic PDEs, least-squares identifier.

I. INTRODUCTION

The safe control with adaptive control barrier function (aCBF),
employing conventional continuous infinite-time adaptation, requires
that the initial conditions be restricted to a subset of the safe set due to
parametric uncertainty, where the safe set is shrunk in inverse proportion
to the adaptation gain. The recent regulation-triggered adaptive control
approach with batch least-squares identification (BaLSI, pronounced
“ballsy”) completes perfect parameter identification in finite time and
offers a previously unforeseen advantage in aCBF-based safe control,
which we elucidate in this article. We will present the control design
based on a class of heterodirectional coupled hyperbolic PDEs [9],
[27], physically motivated by control of delivery unmanned aerial
vehicles with avoiding collision of hanging loads with the surrounding
environment, as described in [30, Sec. A].

A. Control Barrier Functions

The positive-output control refers to keeping the system’s output
state within a safe region that is above the zero line. As is well
known, one way to constrain the state in a safe region is the barrier
Lyapunov function (BLF) method [26], [35], [36]. However, a major
limitation of the BLF-based method is that while it ensures safety, it
also enforces invariance of every level set, which makes it overly strong
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and conservative [3]. The control barrier functions (CBFs), introduced
in [2], turn out to be a powerful tool for the safe control design, which is
often accompanied by a quadratic program (QP) safety filter overriding
a potentially unsafe nominal control signal to generate safe control
actions. High relative degree CBFs were considered in the articles [23],
[33], [34], following the introduction of a non-overshooting control
design in [16] that is considered as the root of high-relative-degree
CBF terminology. With the tools from [16], mean-square stabilization
of stochastic nonlinear systems to an equilibrium at the barrier was
solved in [18], and prescribed-time safety design which enforces safety
only for a finite time of interest to the user was proposed in [1]. The
above-mentioned safe control results focus on the systems described
by ODEs. Very few results address CBF-based safe control for PDEs.
The first one is presented in [14] for a Stefan PDE model with actuator
dynamics, and the event-triggered version is further proposed in [13].

B. Adaptive Control Barrier Functions

In the presence of model uncertainties, most existing safety results
with aCBFs are built upon the idea of aCLFs proposed in [17]. The
pioneering and representative work of aCBFs is [25] which presents
a variant of aCLFs in the context of safety: aCBFs, rendering the
system solutions constrained to a subset of the original safe set. Some
extensions made in [19] and also [21] alleviate the conservatism.
Besides, Lopez and Slotine [20] permited the use of the certainty
equivalence principle, simplifying the procedure in [19] and[25]. The
development on adaptive safety with features of multiple CBFs [10]
was made as well. Unlike the above-mentioned results, Wang and
Xu [32] took into account the uncertainties in the control-input matrix.
The aforementioned works focus only on adaptive safety, Cohen and
Belta [8] made an attempt to synthesize adaptive safety and exponential
stabilization. The above-mentioned aCBF-based safe adaptive control
designs are for ODEs. To the best of our knowledge, this has not been
pursued for PDEs. In this article, we make use of the batch least-squares
identifier (BaLSI) adaptive scheme to propose a new aCBF method to
design a safe adaptive controller for not only an ODE, but also a system
consisting of PDEs and ODEs. The BaLSI was first proposed in [11]
for nonlinear ODEs and then extended to PDEs in [12] and [28]. Unlike
most least-squares estimation methods [5], [6], [7], [15], [31], where
persistency of excitation (PE) is required to guarantee the parameter
convergence, BaLSI does not require the PE assumption.

C. Main Contribution

1) This is the first result of aCBF-based safe adaptive PDE control.
The previous PDE adaptive control designs [4], [12], [24] focus on
the stabilization without dealing with safe constraints of the states. 2)
As compared to the representative work on aCBF-based safe adaptive
control [25], which requires that the initial conditions be restricted to a
subset of the safe set and constrains the system solution to a subset of
the original safe set due to parametric uncertainties, our safe adaptive
control design does not impose extra restrictions on initial states beyond
the safe set and maintains the states in the original safe region after a
finite time.
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D. Notation

1) The symbol Z+ denotes the set of all nonnegative integers, N
denotes the set {1, 2, · · · }, i.e., the natural numbers without 0, and
R+ := [0,+∞).

2) LetU ⊆ R
n be a set with nonempty interior and letΩ ⊆ R be a set.

By C0(U ; Ω), we denote the class of continuous mappings on U ,
which takes values in Ω. By Ck(U ; Ω), where k ≥ 1, we denote
the class of continuous functions on U , which have continuous
derivatives of order k on U and take values in Ω.

3) We use the notation L2(0, 1) for the standard space of the equiva-
lence class of square-integrable, measurable functions f : (0, 1) →
R, with ‖f‖2 :=

∫ 1

0
f(x)2dx < +∞ for f ∈ L2(0, 1). For an

integer k ≥ 1, Hk(0, 1) denotes the Sobolev space of functions
in L2(0, 1) with all its weak derivatives up to order k in L2(0, 1).

4) Let u : R+ × [0, 1] → R be given. We use the notation u[t] to
denote the profile of u at certain t ≥ 0, i.e., u[t] = u(x, t) for all
x ∈ [0, 1].

5) The notation f (i)(t) denote i times derivatives of f . We use
α
(i)
x (x, t) to denote i times derivatives with respect to x of α(x, t).

Similarly, α(i)
t (x, t) denote i times derivatives with respect to t of

α(x, t).
6) Define xj := [x1, x2, . . . , xj ]

T , and Γ(i)(t) := [Γ(1)(t),Γ(2)(t),

. . . ,Γ(i)(t)]T .
7) Define Ci as a vector with ith entry as 1 and other entries are zero.

For ease of presentation, we omit or simplify the arguments of
functions when no confusion arises. Besides, if a > b happens in

∑b
i=a

of this article, it means that the result is zero.

II. PROBLEM FORMULATION

The considered plant is

Ẏ (t) = AY (t) +Bw(0, t) (1)

zt(x, t) = − q1zx(x, t) + d1w(x, t) (2)

wt(x, t) = q2wx(x, t) + d2z(x, t) (3)

z(0, t) = pw(0, t) (4)

w(1, t) = x1(t) (5)

ẋj(t) = xj+1(t) + fj(xj), j = 1, . . . ,m− 1 (6)

ẋm(t) = fm(xm) +
m−1∑
i=0

q̄iz
(i)(1, t) +MTY (t) + U(t) (7)

∀(x, t) ∈ [0, 1]× [0,∞), where XT (t) = [x1, x2, . . . , xm] ∈ R
m

and Y T (t) = [y1, y2, . . . , yn] ∈ R
n are ODE states, the scalars

z(x, t) ∈ R, w(x, t) ∈ R are states of the PDEs. The function
U(t) is the control input to be designed. The actuator X-
ODE is a strict-feedback nonlinear system, where the nonlin-
earities fj satisfy Assumption 1. The Y -ODE (1) is a linear
model, where the matrix A, the column vector B are in the
form of A = [0, 1, 0, 0, . . . , 0; 0, 0, 1, 0, . . . , 0; · · · ; 0, 0, 0, 0, . . . , 1;
l1, l2, l3, . . . , ln−1, ln]n×n and B = [0; 0; · · · ; 0; b]n×1 with arbitrary
constants l1, l2, l3, . . ., ln−1, ln, and b > 0 (without any loss of general-
ity for b < 0). This indicates that the Y -ODE is in the controllable form
that covers many practical models. Other plant parameters in (2)–(7),
i.e., d1, d2, p, q, q̄i, i = 0, . . . ,m− 1, and q1 > 0, q2 > 0 that denote
the transport speed, as well as the n-dimensional row vector MT , are
also arbitrary. The parameter b that exists in the distal ODE, and the co-
efficients d1, d2 of the PDE in-domain couplings that are the potentially
destabilizing terms are unknown. The unknown parameters d1, d2, b

satisfy Assumption 2. Control objective: To exponentially regulate
the overall system, including the plant w-PDE, z-PDE, Y -ODE, and
X-ODE, and enforce “safety,” defined here as the nonnegativity
(without any loss of generality for not exceeding a nonzero setpoint)
of the output of the distal ODE, i.e., the state furthest from the control
input: y1(t) ≥ 0, ∀t ∈ [0,∞). This means that the safe region is the
one above the zero line.

Assumption 1: The functions fj arem− j times differentiable, and
fj(0) = 0.

Assumption 2: The bounds of the unknown parameters d1, d2, b are
known and arbitrary, i.e.,d1 ≤ d1 ≤ d1,d2 ≤ d2 ≤ d2,0 < b ≤ b ≤ b.

During the time interval [0, 1
q2
] no control action can reach the

Y (t) ODE due to the w-transport PDE. Therefore, we have to impose
constrains on the initial states to ensure that the output y1(t) = C1Y (t)
stays in the safe region before the control action begins to regulate the
Y (t)-ODE.

Assumption 3: The initial values of the ODE and PDE states
satisfy i) y1(0) ≥ 0; ii) Π(ς) = C1e

A ς
q2 Y (0) + C1

1
q2
e
A ς

q2

∫ ς

0

e
−A x

q2 B(w(x, 0) − ∫ x

0
F (x, y)z(y, 0)dy − ∫ x

0
H(x, y)w(y, 0)dy)

dx ≥ 0 for 0 < ς < 1 and Π(1) > 0, where the explicit expressions
of F (x, y) and H(x, y) are given in [30, (B.7), (B.8)].

In Assumption 3, the condition i) implies there is no additional
restriction on y1(0) but the original safe set; the condition ii) is the
sufficient and necessary condition of y1(t) ≥ 0 on t ∈ (0, 1

q2
) and

y1(
1
q2
) > 0, i.e., before the control action begins to regulate the Y (t)-

ODE, which will be proven in Lemma 1 latter. Besides, the following
assumption on the actuator state makes the control action for Y -ODE
begin within the region of safe regulation.

Assumption 4: The initial value of the actuator state x1(0) satisfies
x1(0) >

∫ 1

0
Ψ(1, y)z(y, 0)dy +

∫ 1

0
Φ(1, y)w(y, 0)dy + λ(1)Y (0),

where explicit Ψ(1, y), Φ(1, y), λ(1) are given by [30, (A.9), (B.3),
(B.9), (B.10)].

III. NOMINAL OUTPUT-POSITIVE CONTROL DESIGN

A. First Nonundershooting Backstepping Transformation

Following [16], we apply the transformation

zi(t) = yi(t)− gi−1(yi−1
(t)), i = 1, . . . , n (8)

g0 = 0 (9)

gi(yi
(t)) = − κizi(t) +

i−1∑
j=1

∂gi−1

∂yj
yj+1, i = 1, . . . , n− 1 (10)

where the positive design parameters κi, i = 1, . . . , n are to be deter-
mined later, to convert the distal Y -ODE (1) into

Ż(t) = AzZ(t) +Bw(0, t)−BKTY (t) (11)

where Az = [−κ1, 1, 0, 0, . . . , 0, 0; 0,−κ2, 1, 0, . . . , 0, 0; · · · ;
0, 0, 0, 0, . . . ,−κn−1, 1; 0, 0, 0, . . . , 0, 0,−κn]n×n is Hurwitz, and
the constant row vector

KT =
1

b

[
− l1 + κn

∂gn−1

∂y1
,−l2 +

∂gn−1

∂y1
+ κn

∂gn−1

∂y2
, . . . ,

− ln−1 +
∂gn−1

∂yn−2

+ κn
∂gn−1

∂yn−1

,−ln +
∂gn−1

∂yn−1

− κn

]
1×n

. (12)

Note: ifn = 1, thenK in (12) is equal to−l1 − κ1, i.e., insertingn = 1
into the last term in (12) with recalling g0 = 0. Similarly, if n = 2,
then K is a 2-D vector consisting of the first and last terms in (12).
Considering the linear system (1), gn−1(yn−1

(t)) can be expressed as
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a linear combination of yi, i = 1, . . . , n− 1, i.e., gn−1(yn−1
(t)) =∑n−1

i=1
∂gn−1

∂yi
yi, where ∂gn−1

∂yi
are constant. This fact has been used in

deriving (12).
To achieve the original safety goal, the transformed states Z(t) =

[z1, . . . , zn]
T need to be kept nonnegative on t ∈ [ 1

q2
,∞) (there is

no control action for the distal ODE until t = 1
q2

because of the
information transportation along the first-order hyperbolic PDEs).

B. Second PDE Backstepping Transformation

In order to remove the in-domain coupling destabilizing terms from
the 2× 2 hyperbolic PDE system and compensate the term BKTY (t)
in (11), we introduce the following backstepping transformation [22]:

α(x, t) = z(x, t)−
∫ x

0

φ(x, y)z(y, t)dy

−
∫ x

0

ϕ(x, y)w(y, t)dy − γ(x)Y (t) (13)

β(x, t) = w(x, t)−
∫ x

0

Ψ(x, y)z(y, t)dy

−
∫ x

0

Φ(x, y)w(y, t)dy − λ(x)Y (t) (14)

where φ,ϕ, γ,Ψ,Φ, λ are defined in [30, Appendix A1]. The function
β(x, t) should be ensured nonnegative (for t ∈ [ 1

q2
,∞)× x ∈ [0, 1])

in pursuing the original safety goal.
By (13), (14), the system (2)–(5) with (11) is converted into

Ż(t) = AzZ(t) +Bβ(0, t) (15)

α(0, t) = pβ(0, t) (16)

αt(x, t) = − q1αx(x, t) (17)

βt(x, t) = q2βx(x, t) (18)

β(1, t) = x1(t)− Γ(t) (19)

where Γ(t) =
∫ 1

0
Ψ(1, y)z(y, t)dy +

∫ 1

0
Φ(1, y)w(y, t)dy + λ(1)

Y (t).

C. Third Nonundershooting Backstepping Transformation

Similar to Section III-A, we introduce the following modified back-
stepping transformations for proximal X-ODE

hi(t) = xi(t)− τi−1 − Γ(i−1)(t), i = 1, . . . ,m (20)

τ0 = 0 (21)

τi(xi(t),Γ
(i−1)(t)) = −cihi(t)− fi(xi(t))

+
i−1∑
j=1

[
∂τi−1

∂xj

(xj+1 + fj(xj(t))) +
∂τi−1

∂Γ(j−1)(t)
Γ(j)(t)

]

i = 1, . . . ,m− 1 (22)

where the transformed states hi(t) of the proximal ODE also need to
be kept nonnegative for all time to achieve the original safety goal. The
positive constants c1, . . . , cm are design parameters whose conditions
will be shown in the next section. According to Γ(t) shown below (19),
Γ(i)(t) is obtained as Γ(i)(t) = −∑j=i−1

j=0 q1Ri−1−j(1)z
(j)
t (1, t)

+
∑j=i−1

j=0 q1Ri−1−j(0)z
(j)
t (0, t) +

∫ 1

0
Ri(y)z(y, t)dy +

∑j=i−1
j=0

q2Pi−1−j(1)w
(j)
t (1, t)−∑j=i−1

j=0 (q2Pi−1−j(0)− λ(1)Ai−1−jB)

w
(j)
t (0, t) +

∫ 1

0
Pi(y)w(y, t)dy +λ(1)AiY (t), i = 1, . . . ,m where

the functions Ri, Pi are defined by Ri(y) = q1R
′
i−1(y) + d2Pi−1(y),

Pi(y) = −q2P
′
i−1(y) + d1Ri−1(y), i = 1, . . . ,m, R0(y) = Ψ(1, y),

P0(y) = Φ(1, y) with the explicit solutions of Ψ(1, y) and Φ(1, y)
given by [30, (B.9), (B.10), (B.3), (B.7), (B.8)]. Please note that the m
order derivatives of Ψ(1, y) and Φ(1, y) exist according to Theorem 5
in [27].

Through the transformations (8)–(10), (13), (14), (20)–(22), now we
convert the original system (1)–(7) to the target system consisting of
(15)–(18) together with

β(1, t) = h1(t) (23)

ḣi(t) = − cihi(t) + hi+1(t), i = 1, . . . ,m− 1 (24)

ḣm(t) = − cmhm(t) (25)

by choosing the control input as

U(t) = τm −
m−1∑
i=0

q̄iz
(i)
t (1, t)−MTY (t) + Γ(m)(t)

:= U(χ(t); θ) (26)

where χ(t), which denotes all the system signals used in the con-
trol law, can be written as χ(t) = [x1(t), . . ., xm(t), w(0, t),
· · · , w

(m−1)
t (0, t), z(1, t), · · · , z

(m−1)
t (1, t),

∫ 1

0
R(x)w(x, t)dx,∫ 1

0
P(x)z(x, t)dx, y1(t), . . . , yn(t)], for some R(x),P(x) consisting

of Ri(x), Pi(x) defined in [30, (27)–(29)]. Writing θ = [d1, d2, b]
T

after “;” in U(χ(t); θ) emphasizes the fact that the control law depends
on the unknown parameters d1, d2, b. The calculation details in the third
transformation are shown in [30, Appendix C].

D. Selection of Nonundershooting Design Parameters

We choose the design parameters κ1, . . . , κn−1 (κn > 0 is free) to
satisfy

κi >

(∑i−1
j=1

∂gi−1

∂yj
Cj+1 − Ci+1

)
Y ( 1

q2
)

CiY
(

1
q2

)
− gi−1

(
Ci−1Y

(
1
q2

)) := κ̌i(b) (27)

for i = 1, . . . , n− 1, which includes the unknown parameter b, where
Y ( 1

q2
) is expressed as the initial values of z-PDE, w-PDE, and

Y -ODE as Y
(

1
q2

)
= e

A 1
q2 Y (0) +

∫ 1
q2
0 e

A( 1
q2

−τ)
B(w(q2τ, 0)−∫ q2τ

0
F (q2τ, y)z(y, 0)dy − ∫ q2τ

0
H(q2τ, y)w(y, 0)dy)dτ , which can

be seen clearly in the proof of [30, Lemma 1]. The expressions of
F (x, y) and H(x, y) are given in [30, (B.7), (B.8)]. The purpose
of choosing the design parameters as (27) is to make CBFs zi(t),
i = 2, . . . , n, positive at the time t = 1

q2
when the control action

reaches the distal ODE, which will be shown in the next section.
The design parameters c1, . . . , cm are selected as

ci > max{2, či(θ)}, i = 1, . . . ,m− 1, cm > 1 (28)

where

či(θ) =
1

xi(0)− τi−1(xi−1(0),Γ
(i−2)(0))− Γ(i−1)(0)

×
[
− xi+1(0)− fi(xi(0))

+
i−1∑
j=1

[
∂τi−1(xi−1(0),Γ

(i−2)(0))

∂xj(0)
(xj+1(0) + fj(xj(0))
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+
∂τi−1(xi−1(0),Γ

(i−2)(0))

∂Γ(j−1)(0)
Γ(j)(0)

]
+ Γ(i)(0)

]
(29)

for i = 1, . . . ,m− 1, which includes the unknown parameters θ =
[d1, d2, b]

T . The purpose of choosing the design parameters as (28) is
to make CBFs hi(t), i = 2, . . . ,m, positive at t = 0 and ensure the
stability through the Lyapunov analysis, which will be shown in the
next section as well.

E. Result With Nominal Output-Positive Control

For the time interval [0, 1
q2
], no control action reaches the distal

Y (t)-ODE, whose safety is ensured under the given initial conditions,
which is shown in the following lemma.

Lemma 1: For the time period no control action reaches the Y -
ODE, y1(t) is kept in the safe region, i.e., y1(t) ≥ 0, t ∈ [0, 1

q2
) and

y1(
1
q2
) > 0 under Assumption 3 regarding the initial data.

Proof: Please see the proof of [30, Lemma 1]. �
Next, we present two lemmas regarding initializing positively the

CBFs zi(t), hi(t) of distal and proximal ODEs, at t = 1
q2

and t = 0,
by the selection of the design parameters κi and ci in Section III-D,
respectively.

Lemma 2: The positivity of zi( 1
q2
), i.e., the values of high-relative-

degree ODE CBFs zi at the time instant when the control action reaches
the distal ODE, is ensured, i.e., zi( 1

q2
) > 0, i = 1, . . . , n, under the

design parameters κi, i = 1, . . . , n− 1 satisfying (27).
Proof: Recalling (8), (9), and Lemma 1, we know the base case

z1(
1
q2
) = y1(

1
q2
) > 0. We then show the induction step: if zi( 1

q2
) > 0,

then zi+1(
1
q2
) > 0 under the choices ofκi in (27) for i = 1, . . . , n− 1.

We obtain the expression of zi+1(
1
q2
) according to (8), (10). Re-

calling (27) where the denominator CiY ( 1
q2
)− gi−1(Ci−1Y ( 1

q2
)) =

yi(
1
q2
)− gi−1(yi−1

( 1
q2
)) = zi(

1
q2
) > 0 which is obtained from the

inductive hypothesis zi(
1
q2
) > 0, we have that zi+1(

1
q2
) > 0. Con-

sidering the base case and the induction step proved previously, this
lemma is obtained. Due to the space limit, we only provide the sketch
here. Please see the proof of [30, Lemma 2] for details. �

Lemma 3: The high-relative-degree ODE CBFs hi are initialized
positively, i.e., hi(0) > 0, i = 1, . . . ,m, under the design parameters
ci, i = 1, . . . ,m− 1 satisfying (28).

Proof: It is similar to the proof of Lemma 2. Please see the proof
of [30, Lemma 3] for details. �

The above-mentioned three lemmas will be used to prove the safety
property stated in the following theorem.

Theorem 1: For initial data w[0] ∈ Cm−1([0, 1]), z[0] ∈
Cm−1([0, 1]), X(0) ∈ R

m, Y (0) ∈ R
n satisfying Assumptions 1, 3,

4, for design parameters ci, i = 1, . . . ,m satisfying (28) and κi,
i = 1, . . . , n− 1 satisfying (27), the closed-loop system including the
plant (1)–(7) with the nominal safe controller (26) has the following
properties.
1) Safety (output positivity) is ensured in the sense that y1(t) ≥

0, ∀t ≥ 0.
2) Exponential regulation is achieved in the sense that ‖w(·, t)‖2 +

‖z(·, t)‖2 + |X(t)|2 + |Y (t)|2 is exponentially convergent to
zero.

3) The control input is convergent to zero, i.e., limt→∞ U(t) = 0.
Proof:

1) For the target system (15)–(18), (23)–(25), recalling the choice of
the design parameters ci (28) that makes CBFshi(t), i = 2, . . . ,m,
positive at t = 0 as shown in Lemma 3, and the choice of the
design parameters κj (27) that makes CBFs zi(t), i = 2, . . . , n,
positive at the time t = 1

q2
as shown in Lemma 2, we obtain the

nonnegativity of CBFs: hi(t) ≥ 0, i = 1, . . . ,m, on t ∈ [0,∞),
zi(t) ≥ 0, i = 1, . . . , n andβ(·, t) ≥ 0 on t ∈ [ 1

q2
,∞). As a result,

y1(t) = z1(t) > 0 for t ∈ [ 1
q2
,∞). Recalling the fact that y1(t) ≥

0, t ∈ [0, 1
q2
] under Assumption 3 regarding the initial data, as

shown in Lemma 1, the property 1 is thus obtained.
2) Consider a Lyapunov function V (t) = Z(t)TPZ(t) + r

2∑m
i=1 hi(t)

2 + 1
2

∫ 1

0
e−xα(x, t)2dx + 1

2

∫ 1

0
a0e

xβ(x, t)2dx
where the positive-definite matrix P = PT is the solution to the
Lyapunov equation AT

ZP + PAZ = −Q for some Q = QT > 0,

and where positive constants a0, r satisfy a0 ≥ q1q
2

q2
+ 4|PB|2

q2λmin(Q)
,

r > 1
3
q2a0e+ 1. Taking the derivative of the Lyapunov function

along the target system (15)–(18), (23)–(25), applying Young’s
inequality, recalling the conditions of the design parameters ci
in (28), we arrive at V̇ ≤ −σ0V (t) for some positive σ0, which
shows the exponential stability of the target system. According to
the backstepping transformations and their inverses in this section,
recalling Assumption 1, we thus obtain the property 2.

3) The property 3 can then be obtained from the property 2. Due to
the space limit, we only provide the proof sketch here. Please see
the proof of [30, Theorem 1] for the details. �

IV. OUTPUT-POSITIVE ADAPTIVE CONTROL DESIGN

A. Adaptive Controller

1) Certainty Equivalence Control Law: First, we build a
certainty equivalence adaptive controller, which is potentially unsafe,
by replacing the unknown parameters θ in the nominal control input U
with the parameter estimate θ̂, i.e.,

Ud(t) := U(χ(t); θ̂(ti)), t ∈ [ti, ti+1) (30)

where θ̂(ti) = [d̂1, d̂2, b̂]
T , an estimate generated with a triggered batch

least-squares identifier that is updated along a sequence of time instants
ti and uses the plant states in a time interval before ti to produce the
parameter estimates, will be defined in Section IV-A2, and where the
sequence of triggering time instants {ti ≥ 0}∞i=0 is defined as

ti+1 = ti + T (31)

where T , a positive design parameter, is free. Here, we use the simple
triggering mechanism (31) for easier implementation. A more compli-
cated but more effective event-triggering mechanism in [29] to update
batch least-squares identifier for hyperbolic PDEs by evaluating the net
increase of the system norms can also be used here.

2) Batch Least-Squares Identifier: According to (2), (3), we
get for τ > 0 and n̄ = 1, 2, · · · that

d

dτ

(∫ 1

0

sin(xπn̄)z(x, τ)dx+

∫ 1

0

sin(xπn̄)w(x, τ)dx

)

= −q2πn̄

∫ 1

0

cos(xπn̄)w(x, τ)dx

+ d1

∫ 1

0

sin(xπn̄)w(x, τ)dx+ q1πn̄

∫ 1

0

cos(xπn̄)z(x, τ)dx

+ d2

∫ 1

0

sin(xπn̄)z(x, τ)dx (32)

d

dτ
yn(τ) =

n∑
i=1

liyi(τ) + bw(0, τ). (33)

Define the instant μi+1 as μi+1 = min{tg : g ∈ {0, . . . , i}, tg ≥
ti+1 − ÑT} for i ∈ Z

+, where the positive integer Ñ ≥ 1 is a free
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design parameter. Integrating (32), (33) from μi+1 to t, yields

pn̄(t, μi+1) = d1gn̄,1(t, μi+1) + d2gn̄,2(t, μi+1) (34)

pb(t, μi+1) = bqb(t, μi+1) (35)

where pn̄, gn̄,1, gn̄,2, pb, qb are given in [30, (74)–(78)]. Define
the function hi,n̄ : R3 → R+ by the formula hi,n̄(�) =

∫ ti+1

μi+1
[(pn̄

(t, μi+1) − �1gn̄,1(t, μi+1) − �2gn̄,2(t, μi+1))
2 + (pb(t, μi+1)−

�3qb(t, μi+1))
2]dt, for i ∈ Z

+, where � = [�1, �2, �3]
T . According to

(34), (35), the function hi,n̄(�) has a global minimum hi,n̄(θ) = 0. We
get from Fermat’s theorem (differentiating the functions hi,n̄(�) with
respect to �1, �2, �3, respectively, and using the fact that the derivatives
at the position of the global minimum (�1, �2, �3) = (d1, d2, b) are
zero) that the following matrix equation hold for every i ∈ Z+ and
n̄ ∈ N:

Zn̄(μi+1, ti+1) = Gn̄(μi+1, ti+1)θ (36)

where θ = [d1, d2, b]
T is a column vector of unknown pa-

rameters, and where Zn̄ = [Hn̄,1,Hn̄,2,H3]
T , Gn̄ = [Qn̄,1, Qn̄,2,

0;Qn̄,2, Qn̄,3, 0; 0, 0, Q4]withHn̄,1,Hn̄,2,H3, Qn̄,1, Qn̄,2, Qn̄,3, Q4

given by [30, (82)–(88)]. The parameter estimator (update law) is
defined as

θ̂(ti+1) = argmin

{
|�− θ̂(ti)|2 : � ∈ Θ,

Zn̄(μi+1, ti+1) = Gn̄(μi+1, ti+1)�, n̄ = 1, 2, · · ·
}

(37)

where Θ = {� ∈ R
3 : d1 ≤ �1 ≤ d1, d2 ≤ �2 ≤ d2, 0 < b ≤ b ≤ b}.

B. Output-Positive Adaptive Controller

The adaptive controller (30) is potentially unsafe because the mis-
match between the parameter estimates and the true values leads to the
safety obtained in Theorem 1 is not ensured anymore. Next, we design
an output-positive adaptive controller by making use of a QP safety
filter to override the adaptive controller Ud (30).

Considering the plant parameters d1, d2, b that are considered as
unknown in this section, the design parameter conditions (27), (28) in
the nominal control design are slightly modified as

κi > max
b≤ς≤b

κ̌i(ς), i = 1, . . . , n− 1 (38)

ci > max

{
2,max

ϑ∈Θ
či(ϑ)

}
, i = 1, . . . ,m− 1, cm > 1 (39)

using the known bounds of the unknown parameters in Assumption 2,
where κ̌i, či are defined in (27), (29), respectively.

With (38), (39), and Assumption 3, the required positive initialization
in Lemmas 2 and 3 is achieved. Like the nominal control design, a
sufficient condition to the safety guarantee, i.e., the nonnegativity of the
functionshi, β, zi, ishm(t) ≥ 0 all the time, whose sufficient condition
is

ḣm(t; θ) ≥ −c̄hm(t; θ) (40)

under the positive initialization, where the positive constant c̄ is a
design parameter satisfying c̄ ≥ cm. Writing θ = [d1, d2, b]

T after “;”
in hm(t; θ) emphasizes the fact that now hm depends on the unknown
parameters d1, d2, b. Considering the uncertainties, recalling (7), (20),
(22), and the adaptive estimate (37), it follows the CBF constraint (40)
that a safe region of the adaptive control action is

C(t) =
{
u ∈ R : u ≥ max

ϑ∈Di

U ∗(χ;ϑ)
}
, t ∈ [ti, ti+1) (41)

where the explicit function U ∗ is

U ∗(χ; θ) = (cm − c̄)hm + τm −
m−1∑
i=0

q̄iz
(i)
t (1, t)−MTY (t)

+ Γ(m)(t) (42)

which is identical to (26) when replacing c̄ with cm. The sets Di are
generated in running BaLSI (37) and given by

Di = {� ∈ Θ : Zn̄(μi, ti) = Gn̄(μi, ti)�} ∩Di−1 (43)

for i ∈ N and D0 = Θ. It implies that

θ ⊆ Di ⊆ Θ, i ∈ Z
+ (44)

recalling (36). Computing maxϑ∈Di
U ∗(χ;ϑ) will not cost too much

time because U ∗(χ;ϑ) is an explicit function of ϑ, and the seeking
range Di would possibly be shrunk as time goes on until it becomes a
singleton.

Making use of a QP safety filter to guarantee the adaptive control
input stays in the safe region (41), we build the output-positive adaptive
controller Ua(t) as

Ua = argmin
u∈R

{|u− Ud|2}, s.t.u ∈ C(t). (45)

Remark 1: Our design encompasses all the essential features of a
CBF safety design. The chain structures for the two ODEs, i.e., (15),
(24), (25) in the target system, are essentially the high relative-degree
CBFs, which were introduced in 2006 [16] for nonovershooting control
and were independently discovered in 2016 [23]. Moreover, as is typical
with traditional CBFs for ODEs, the PDE state β(x, t) in the target
system is also required to be ensured nonnegative for the purpose of
safety. In addition, the QP safety filter often used in the CBF-based
control is (45).

C. Result With Output-Positive Adaptive Control

Defining the difference between U(t) and Ua(t) as

η(t) = U(t)− Ua(t) (46)

inserting Ua defined by (30) into (7), recalling the nominal control
design in Section III-C, the target system becomes (15)–(18), (23),
(24) together with

ḣm(t) = −cmhm(t)− η(t). (47)

Proposition 1: For every (z[0], w[0],X(0), Y (0)) ∈ Cm−1([0,
1])2 × R

m × R
n, there exists a unique solution (z, w,X, Y ) ∈

Cm−1([0,∞)× [0, 1])2 × C
0([0,∞);Rm)× C

0([0,∞);Rn) to the
system (1)–(7) with the control input (45).

Proof: Please see the proof of [30, Proposition 1]. �
Lemma 4: The finite-time exact identification of the unknown

parameters is achieved, that is, there exists a finite updating time tf ,
f ∈ Z

+, such that θ̂(t) ≡ θ, ∀t ≥ tf . Also, the setDi defined by (43) is
shrunk to a singleton at tf and is kept at the singleton, which is nothing
else but the unknown parameter’s true value θ, for i ≥ f , i ∈ Z

+.
Proof: The proof is given in [30, Appendix D]. �
Some tips on implementation of the control law (45) to avoid falling

into the extreme and rare cases that hinder the finite time exact parameter
identification are given in [30, Remark 2]. It follows from Lemma 4 and
(31) that the convergence time tf depends on the plant’s initial values
and can be influenced by the design parameter T that is a free positive
design parameter related to the amount of the measurement data used
in parameter estimation.
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Fig. 1. Diagram of the proposed control system.

Fig. 2. Responses of the state to be safely regulated (the safe region
is the one above the zero line).

Fig. 3. Responses of y2(t) and the parameter estimates. (a) y2(t).
(b) Estimates.

Fig. 4. Responses of w(x, t), z(x, t) under the nominal safe and safe
adaptive controllers. (a) Nominal safe control. (b) Nominal safe control.
(c) Safe adaptive control. (d) Safe adaptive control.

Fig. 5. Responses of x1(t), x2(t) under the nominal safe and safe
adaptive controllers. (a) x1(t). (b) x2(t).

The result of the output-positive adaptive closed-loop system, whose
diagram is shown in Fig. 1, is given as follows.

Theorem 2: For initial data (w[0], z[0])T ∈ Cm−1([0, 1]),
θ̂(0) ∈ Θ, X(0) ∈ R

m, Y (0) ∈ R
m satisfying Assumptions 1–4,

for design parameters ci, i = 1, . . . ,m satisfying (39) and κi, i =
1, . . . , n− 1 satisfying (38), the closed-loop system including the
plant (1)–(7) with the output-positive adaptive controller (45) has the
following properties.
1) Safety (output positivity) is ensured in the sense that y1(t) ≥

0, ∀t ≥ 0. Moreover, it runs in the original safe set like the nominal
safe control after the finite time.

2) Exponential regulation of the plant states is achieved in the sense
that ‖w(·, t)‖2 + ‖z(·, t)‖2 + |X(t)|2 + |Y (t)|2 is exponentially
convergent to zero.

3) The output-positive adaptive control input is exponentially conver-
gent to zero, i.e., limt→∞ Ua(t) = 0.

Proof: 1) According to (41)–(44), the controller (45) with the
adaptive CBF constraint guarantees ḣm(t) = −c̄hm(t) + η̄(t) where
η̄(t) = Ua(t)− U ∗(χ; θ) ≥ 0 because ofUa ≥ maxϑ∈Di

U ∗(χ;ϑ) ≥
U ∗(χ; θ) due to (44). It implies that hm(t) ≥ η̄(t) ≥ 0 all the
time recalling hm(0) > 0 ensured by the choices of design pa-
rameters (39). Especially, for t ∈ [tf ,∞), it follows from Lemma
4 that Ud(t) = U(t) recalling the nominal controller U(t) (26)
and the adaptive controller Ud (30), as well as the control in-
put’s safe region boundary maxϑ∈Di

U ∗(χ;ϑ) = U ∗(χ; θ) in (42).
Then, we have maxϑ∈Di

U ∗(χ;ϑ)− Ud(t) = U ∗(χ; θ)− U(t) =
(cm − c̄)hm(t) ≤ 0 for t ≥ tf recalling c̄ ≥ cm andhm(t) ≥ 0proven
previously. It implies thatUd ∈ C because of (41), and thusUa = Ud =
U for t ≥ tf according to (45), which means that η(t) ≡ 0, ∀t ≥ tf
in (47) because of (46). Therefore, ḣm(t) = −cmhm(t) holds on
t ∈ [tf ,∞), i.e., the state runs in the original safe set like the nominal
safe control when t ≥ tf . The property 1in this theorem is obtained.
Applying η(t) ≡ 0, ∀t ≥ tf in (47), the property 2 is obtained follow-
ing the proof of the property 2 in Theorem 1. 3) The property 3 is
straightforwardly obtained from the property 2. �

V. SIMULATION

A. Model and Controller

The considered simulation model is (1)–(7) with the parameters
A = [0, 1; l1, l2] = [0, 1; 1,−0.5], B = [0, b]T = [0, 1]T , q1 = q2 =
1, d1 = 0.8, d2 = 1,m = 2, n = 2, p = 1, q̄0 = 1, q̄1 = 1, MT =
[0.1, 0.3], and the functions f1 and f2 in (6), (7) are
f1(x1) = x2

1, f2(x2) = x1x2. The known bounds of the
unknown parameters d1, d2, b are set as d1 = d2 = 1.2, d1 =
d2 = 0.2, b = 1.5, b = 0.5. The initial values are defined as
w(x, 0) = cos(2πx), z(x, 0) = 2 sin(3πx), x1(0) = 1, x2(0) =
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−1, y1(0) = 5, y2(0) = 0, d̂1(0) = d̂2(0) = 0.2, b̂(0) = 0.5. The
initial values in the simulation satisfy Assumptions 3 and 4. The
simulation model is open-loop unstable, where the unstable sources
exist in every subsystem.

Following the control design in Sections III and IV, we ob-
tain the nominal safe and adaptive safe controllers, whose details
are given in [30, Sec. V-B], where we choose the design pa-
rameters c1, c2, κ1, κ2, c̄, n̄, Ñ , T (the nominal controller only re-
quires c1, c2, κ1, κ2) as follows. The design parameters c1 = 38, c2 =
20, κ1 = 30, κ2 = 10 are chosen to satisfy the condition (38), (39) with
(27), (29), and the arbitrary positive design parameters c̄ = 50, n̄ =
1, Ñ = 10, T = 1.5 are chosen considering the following tradeoff in
implementation. Increasing the design parameter T, Ñ will let more
measured data take part in estimation, which is helpful to improve the
estimation accuracy but will prolong the duration of adaptive learning.
The increase of n̄ contributes to finding the true values on time at the
cost of more computing resources. The adjustment of c̄ will affect the
adaptive control input’s safe region adopted in the QP safety filter.
Some tips on implementation of the parameter identifier (37) are given
in [30, Sec. V-B].

B. Simulation Result

We conduct the simulation by the finite-difference method with a
time step of 0.001 and a space step of 0.002 for the adaptive case,
where the relatively small space step is selected to reduce the approx-
imation error of integration in the identifier mentioned previously, for
the nominal case a larger space step as 0.05 can be used to save the
computation time.

The response of the distal ODE’s output state y1(t) that is expected
to be kept in the safe region, i.e., the nonnegativity, the other state y2(t)
in the distal ODE, and the estimates of the unknown plant parameters
d1, d2, b are shown in Figs. 2 and 3. In Fig. 2, the three results have
the same behavior before t = 1 s because in this time period no control
action reaches the Y -ODE and the responses only depend on the initial
values of the plant. As compared to the nominal safe (output-positive)
control, even though the mismatch between the parameter estimates and
their true values degrades the control performance of the safe (output-
positive) adaptive controller before around t = 2.5, the response under
the safe adaptive control begins to fast converge to zero like the nominal
control result after 2.5 s [the adaption time is 1.5 s that can be seen in
Fig. 3(b), and the time taken by the updated control actions spreading
from x = 1 to x = 0 is 1 s]. Both nominal safe and safe adaptive
controllers can constrain the output state y1(t) in the safe region, i.e.,
y1(t) ≥ 0, and achieve the exponential convergence to zero of y1(t),
while the state blows up in the open loop since the simulation model is
open-loop unstable. We know from Fig. 3(b) that the exact identification
of the unknown parameters is achieved at the first triggering time, under
the nonzero initial values given in Section V-A. Please note that the
tiny difference between the final estimates d̂1, d̂2 and their true values
comes from approximation error of integration. Reducing the space
step of the integration in BaLSI contributes to a smaller estimation
error, but requires more computational power. It is shown in Figs. 4
and 5 that the PDE plant states z(x, t), w(x, t), and the nonlinear ODE
states x1(t), x2(t) all converge to zero under the nominal safe and safe
adaptive control inputs.

VI. CONCLUSION AND FUTURE WORK

In this article, we present an output-positive adaptive control de-
sign method for 2 × 2 hyperbolic PDEs sandwiched between a strict-
feedback nonlinear ODE on the actuated side and a linear ODE on

the uncontrolled side. The coefficients of the unstable sources in the
PDE domain and of the input signal in the distal ODE to be kept safe
are unknown. Our contort design guarantees the safety (nonnegativity)
of the state furthermost from the control input and the exponential
regulation of overall plant states to zero. The numerical simulation
illustrates the validity of the proposed control design. In the future work,
we will consider the case that z(1, t) and Y (t) are not accessible, and
work on improving the robustness of the controller with respect to the
external disturbance.
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