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Output-Feedback Control of an Extended Class
of Sandwiched Hyperbolic PDE-ODE Systems
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Abstract—Motivated by an engineering application in
brake control of cable mining elevators, where the dynam-
ics consist of a brake, a shock absorber, a time-varying-
length cable, and a cage, we address a theoretical problem
of control of a particular class of coupled hyperbolic PDEs
sandwiched between a nonlinear ODE on the actuated side
and a linear ODE on the opposite side, with a PDE domain
that is time-varying. A state-feedback controller entering a
single ODE state is designed to exponentially stabilize the
overall system through several backstepping transforma-
tions. An observer which only uses the boundary values at
the actuated side is constructed to recover all the states
of the overall system, based on which a “collocated” type
output-feedback control system is proposed. The global
exponential stability of the closed-loop system, bounded-
ness, and exponential convergence of the controller, are
proved via Lyapunov analysis. The performance is inves-
tigated via numerical simulation.

Index Terms—Backstepping, boundary control, dis-
tributed parameter system, hyperbolic PDE.

I. INTRODUCTION

A. Motivation

BRAKE performance is one of important safety indexes of
a mining cable elevator [29], [30], where the brake system

consists of a drum brake, a shock absorber, a time-varying-length
cable, and a cage. In the process of stoppages, especially in the
emergence stop of a high-speed elevator, the acceleration of the
cage changes rapidly, which would cause large vibrations and
significant oscillations of stress in the cable. It would not only
lead to passengers discomfort or injured by impact [27], but
also produce premature fatigue problems [33] which require
frequent inspections, costly repairs, and may result in cable
fracture in a worst case. Some researchers installed additional
brake devices, such as a magnetorheological fluid damper [27]
or a “safety gear” [19], between the cage and the rail guide
to improve the brake performance of an elevator. It is a more
economic and convenient way to design an appropriate brake
control force applied at the drum brake to stop the cage smoothly
through a shock absorber and a cable, without modifying the
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original structure of the mining cable elevator. This task can
be mathematically abstracted as boundary control of coupled
hyperbolic PDEs sandwiched between a cascade of a linear ODE
and a nonlinear ODE on the actuated side and a linear ODE on
the opposite side, with a PDE domain that is time-varying, for
the dynamics of the aforementioned brake system.

B. Control of Coupled Hyperbolic PDEs

A time-varying-length cable connecting with a cage is a
major element in the cable elevator, which can be modeled
as a coupled hyperbolic PDE-ODE system on a time-varying
domain, obtained from transforming a wave PDE-ODE system
with in-domain damping through Riemann transformation [33].
Control of the coupled hyperbolic PDEs has received much
attention in the recent years. Some successful methods to sta-
bilize coupled transport PDEs in different directions can be
found in [7], [9], [15], [21], and [28], on the basis of which
some adaptive control designs for the hyperbolic PDEs with
uncertain system parameters were also proposed in [4], [6],
[37], and [38]. Moreover, some results about boundary con-
trol of coupled transport PDE-ODE systems were presented
in [1]–[3], [10], [12], [22], [26]. Boundary control designs of
a class of infinite dimensional Port–Hamiltonian systems were
proposed in [20] and [25]. The aforementioned papers focus
on PDE systems on a fixed domain rather than a time-varying
domain in accordance with the varying length of the cable. In
a recent work [33], output-feedback control of a linear coupled
hyperbolic PDE-ODE system on a time-varying domain was
developed and applied into balancing control of a dual-cable
mining cable elevator. However, all the above research considers
control actuation directly flowing into the PDE boundary and
ignoring the actuator dynamics. The dynamics of the drum brake
and shock absorber have a significant influence on the brake
performance of the mining cable elevator, so their dynamics,
i.e., the actuator dynamics should be taken into consideration
for the brake control design of the mining cable elevator, which
produces a more challenging problem about control of a coupled
hyperbolic PDE “sandwiched” system.

C. Control of “Sandwiched” PDE systems

Recently, some results about state-feedback and output-
feedback control of coupled hyperbolic PDEs sandwiched be-
tween two ODEs were presented in [32] and [11], respectively,
via the backstepping method. In addition to the coupled hy-
perbolic PDEs, control of transport PDE [5], [16], [17], vis-
cous Burgers PDE [18] or heat PDE [35] sandwiched systems
were also achieved successfully. However, these results only
dealt with the problems where the PDE is on a fixed domain
and sandwiched by linear ODEs. Control of a fixed-domain
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Fig. 1. Signal flow diagram of the plant (1)–(8).

sandwiched wave PDE including a nonlinear ODE was pre-
sented in [34] by using the naive and straightforward back-
stepping method, which results in some high-order derivative
terms in the resulting control law. Motivated by brake control
of a mining cable elevator mentioned in Section I-A, a more
challenging task dealt with in this article is output-feedback
control design of a particular class of coupled hyperbolic PDEs
sandwiched between a cascade of a linear ODE and a nonlinear
ODE on the actuated side and a linear ODE on the opposite
side, with a PDE domain that is time-varying, as displayed in
Fig. 1. Moreover, the control input should be guaranteed as
boundedness and exponential convergence to zero.

D. Main Contribution

1) Compared with recent results on boundary control of
ODE-PDE-ODE systems [5], [11], [23], we not only
consider a PDE on a time-varying domain, but also deal
with a cascade of ODEs with nonlinearity in the actuation
path of the PDE, and the global exponential stability of
the closed-loop system, the exponential convergence of
the designed control input are achieved.

2) As compared to our previous result about state-feedback
control of ODE-coupled hyperbolic PDE-ODE sand-
wiched system on a fixed domain [32], this article solves a
more challenging problem where a nonlinear ODE exists
in the input channel of the PDE into which it enters and
which is on a time-varying domain. Moreover, a “col-
located” type observer-based output-feedback controller
without the derivatives of states is proposed.

3) This is the first result of stabilizing such a particular
class of coupled hyperbolic PDEs sandwiched between a
nonlinear ODE on the actuated side and a linear ODE on
the opposite side, where the PDE domain is time-varying
and the control action enters a single ODE state. Even if
the time-varying domain is reduced to a fixed domain, the
theoretical result is new.

E. Organization

The rest of the article is organized as follows. The problem
formulation is presented in Section II. State-feedback control
design and stability analysis are proposed in Section III. Ob-
server design of the overall system is present and the exponential
stability of the observer error system is proved in Section IV. The
exponential stability of the output-feedback closed-loop system
is given in Section V. The simulation results are provided in
Section VI. The conclusion and future work are presented in
Section VII.

Notation: Throughout this article, the partial derivatives and
total derivatives are denoted as: ux(x, t) = ∂u

∂x (x, t), ut(x, t) =
∂u
∂t (x, t), γ

′(x) = dγ(x)
dx , Ẋ(t) = dX(t)

dt .

II. PROBLEM FORMULATION

The plant considered in this article is

Ẋ(t) = AX(t) +Bv(0, t) (1)

ut(x, t) = −p1ux(x, t) + c1v(x, t) (2)

vt(x, t) = p2vx(x, t) + c2u(x, t) (3)

u(0, t) = qv(0, t) + CX(t) (4)

v(l(t), t) = s1(t) (5)

ṡ1(t) = c3s2(t) + f1

(
s1(t),

∫ l(t)

0

u(x, t)dx

)
(6)

ṡ2(t) = f2(s1(t), s2(t), u(l(t), t)) + z(t) (7)

ż(t) = c4z(t) + ru(l(t), t) + U(t) (8)

∀(x, t) ∈ [0, l(t)]× [0,∞), where X(t) ∈ Rn×1, z(t) ∈ R are
ODE states, which describe the vibration dynamics of the cage
and drum. The nonlinear ODE-S(t) = [s1(t), s2(t)]

T ∈ R2×1

represents the shock absorber dynamics. u(x, t) ∈ R, v(x, t) ∈
R are states of the 2× 2 coupled hyperbolic PDEs, which model
the vibration states of the cable. A ∈ Rn×n, B ∈ Rn×1, C ∈
R1×n satisfy that the pair [A,B] is controllable and [A,C] is
observable. c1, c2, c3, c4, r, q ∈ R are arbitrary. p1 and p2 are
arbitrary positive transport velocities. U(t) is the control input
to be designed. The general nonlinear functions f1 and f2 can
be unknown functions in the state-feedback control.

Functions f1, f2, and l(t) satisfy the following assumptions.
Assumption 1: f1(0, 0) = 0 and f2(0, 0, 0) = 0.
Assumption 2: f1(x1, x2) and f2(x1, x2, x3) are continu-

ously differentiable and globally Lipschitz in (x1, x2) and
(x1, x2, x3), respectively.

Assumption 3: l(t) ∈ C2(0,∞). l(t) is bounded: 0 < l(t) ≤
L, ∀t ≥ 0.

Assumption 4: Velocity l̇(t) of the moving boundary is
bounded by ∣∣∣l̇(t)∣∣∣ < min{p1, p2}. (9)

Equations (1)–(5) can be regarded as being reversibly con-
verted from a wave PDE with in-domain damping through the
Riemann coordinate transformation [33]. Therefore, according
to the conclusions in [13] and [14], the fact that the derivative of
the moving boundary l(t) is smaller than the wave speed, i.e.,
Assumption 4, allows to prove a well-posedness result for the
initial boundary value problem (1)–(5).

The signal flow of the plant (1)–(8) is shown in Fig. 1, where
the control input U(t) goes through a linear ODE (8) acting as
a filter, of which the output signal z(t) drives a nonlinear ODE
(6), (7) including states s2(t) and s1(t) which flows into the
right boundary x = l(t) (5) of the transport PDE-v (3), which
is coupled with another transport PDE-u (2), (4) and connected
with a linear ODE (1) at the left boundary x = 0. The reflect
signals flow back to the ODEs (6)–(8) via the transport PDE-v.

The control objective and available measurements: the con-
trol objective here is to exponentially stabilize all ODE states
S(t), X(t), z(t) and PDE states u(x, t), v(x, t) by designing
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a control input U(t) applied at the first ODE (8), using the
measurements v(l(t), t), u(l(t), t), z(t).

III. STATE-FEEDBACK CONTROL DESIGN

In Section III-A, a PDE backstepping transformation is used
to convert the coupled hyperbolic PDE-ODE subsystem to a
“stablelike” intermediate system where the in-domain couplings
between the hyperbolic PDEs are removed and the state matrix
of the ODE at the left boundary is Hurwitz. The right bound-
ary condition of the intermediate system can be regarded as
a cascade of a nonlinear ODE and a linear ODE under some
perturbations from the PDE states in the time-varying domain
and the left boundary, which would be dealt with by using
an ODE backstepping procedure in Section III-B. The global
exponential stability of the closed-loop system is proved in
Section III-C, where some control parameters which come from
the ODE backstepping design procedure and should tolerate the
PDE perturbations are determined. Moreover, the boundedness
and exponential convergence of the designed control input are
proved as well.

A. Backstepping Transformation for PDE-ODE
Subsystem (u(x, t), v(x, t), X(t))

We consider the infinite-dimensional backstepping transfor-
mation [32] of the PDE states u(x, t), v(x, t)

α(x, t) = u(x, t) (10)

β(x, t) = v(x, t)−
∫ x

0

ψ(x, y)u(y, t)dy

−
∫ x

0

φ(x, y)v(y, t)dy − γ(x)X(t). (11)

The kernels ψ(x, y), φ(x, y) on D = {0 ≤ y ≤ x ≤ l(t)} and
the row vector γ(x) on {0 ≤ x ≤ l(t)} satisfy

c2 + (p1 + p2)ψ(x, x) = 0 (12)

p2φ(x, 0) = γ(x)B + p1qψ(x, 0) (13)

− c1ψ(x, y) + p2φx(x, y) + p2φy(x, y) = 0 (14)

c2φ(x, y)− p2ψx(x, y) + p1ψy(x, y) = 0 (15)

p2γ
′(x)− γ(x)A− p1ψ(x, 0)C = 0 (16)

γ(0) = κ (17)

where κ is a row vector such that A+Bκ is Hurwitz, since the
pair [A,B] is controllable. Please refer to Lemma 1 of [32] and
Lemma 1 of [36] for the well posedness of (12)–(17).

The inverse of (10) and (11) is considered as

u(x, t) = α(x, t) (18)

v(x, t) = β(x, t)−
∫ x

0

D(x, y)α(y, t)dy

−
∫ x

0

M(x, y)β(y, t)dy − J (x)X(t) (19)

where D(x, y),M(x, y), and the row vector J (x) are the
kernels of the inverse transformation (19), of which the well
posedness is shown in [32, Sec. 2.4].

Applying the above backstepping transformations, the orig-
inal system (1)–(5) is converted to the following intermediate

system (without the right boundary condition):

Ẋ(t) = (A+Bκ)X(t) +Bβ(0, t) (20)

αt(x, t) = − p1αx(x, t) + c1β(x, t)

− c1

∫ x

0

D(x, y)α(y, t)dy

− c1

∫ x

0

M(x, y)β(y, t)dy − c1J (x)X(t) (21)

βt(x, t) = p2βx(x, t) (22)

α(0, t) = qβ(0, t) + C0X(t) (23)

where the row vectorC0 = C + qγ(0). Let us now consider the
right boundary condition. Inserting x = l(t) into (11) and taking
the derivative with respect to t, we have

β̇(l(t), t) = v̇(l(t), t)− l̇(t)ψ(l(t), l(t))u(l(t), t)

− l̇(t)φ(l(t), l(t))v(l(t), t)− l̇(t)

∫ l(t)

0

ψx(l(t), y)u(y, t)dy

− l̇(t)

∫ l(t)

0

φx(l(t), y)v(y, t)dy

− l̇(t)γ′(l(t))X(t)−
∫ l(t)

0

ψ(l(t), y)ut(y, t)dy

−
∫ l(t)

0

φ(l(t), y)vt(y, t)dy − γ(l(t))Ẋ(t). (24)

Using (5) and (6) to replace v̇(l(t), t) in (24), and then plugging
the inverse transformations (18), (19) into (24) to replace u, v
withα, β, through a change of the order of integration in a double
integral, we get β̇(l(t), t) as

β̇(l(t), t)

= c3s2(t) + f1

(
β(l(t), t)−

∫ l(t)

0

D(l(t), y)α(y, t)dy

−
∫ l(t)

0

M(l(t), y)β(y, t)dy − J (l(t))X(t),

∫ l(t)

0

α(y, t)dy

)

+ F(β(l(t), β(0, t), α(l(t), t), α(0, t), β(x, t), α(x, t), X(t))
(25)

whereF is a perturbation including β(l(t), t), β(0, t),α(l(t), t),
α(0, t), β(x, t), α(x, t), and X(t). The complete expression of
F is shown in Appendix-A. Recalling (5), (7), (8) and (18), (19),
yields

ṡ2(t) = f2

(
β(l(t), t)−

∫ l(t)

0

D(l(t), y)α(y, t)dy

−
∫ l(t)

0

M(l(t), y)β(y, t)dy − J (l(t))X(t), s2(t), α(l(t), t)

)

+ z(t) (26)

ż(t) = c4z(t) + rα(l(t), t) + U(t). (27)

Note that (25)–(27) are the right boundary condition of the
intermediate system in the form of several ODEs regulated by
the control input U(t).
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Remark 1: (25)–(27) (β(l(t), t), s2(t), z(t)) is a cascade of
ODEs converted from (5)–(8) (s1(t), s2, z(t)) via transforma-
tion (10), (11). Equations (25) and (26) are a second-order non-
linear ODE (β(l(t), t), s2(t)) with perturbations F . Equation
(27) is a first-order linear ODE z(t)with a perturbationα(l(t), t).

Through the backstepping transformations (10), (11), the
original system-(u(x, t), v(x, t),X(t), s1(t), s2(t), z(t)) (1)–(8)
is converted to the intermediate system-(α(x, t), β(x, t), X(t),
β(l(t), t), s2(t), z(t)) (20)–(23), (25)–(27). Next, we propose
backstepping design for the ODEs (β(l(t), t), s2(t), z(t)) (25)–
(27) at the right boundary of the intermediate system.

B. Backstepping Transformation for ODEs (25)–(27)

The following backstepping transformation for the
(β(l(t), t), s2(t)) system (25), (26) is made:

y1(t) = β(l(t), t) (28)

y2(t) = s2(t) + τ1(t) (29)

where τ1(t) to be defined in the following steps is the virtual
control in the ODE backstepping method.

Step 1: We consider a Lyapunov function candidate as Vy1 =
1
2y1(t)

2. Taking the derivative of Vy1, recalling (22), (25), and
(29), we obtain

V̇y1 = y1(t)ẏ1(t) = y1(t)β̇(l(t), t)

= y1(t) (c3y2(t)− c3τ1(t) + f1 + F) . (30)

The arguments of f1 and F are omitted in (30), which are the
same as those in (25).

Define

τ1(t) =
c̄1
c3
y1(t) (31)

where c̄1 is a positive constant to be determined later.
Substituting (31) into (30) yields

V̇y1 = −c̄1y1(t)2 + c3y1(t)y2(t) + y1(t)f1 + y1(t)F . (32)

Step 2: A Lyapunov function candidate for y1(t), y2(t) is
considered as

Vy = Vy1 +
1

2
y2(t)

2 =
1

2
y1(t)

2 +
1

2
y2(t)

2. (33)

Taking the derivative of (33), we have

V̇y = − c̄1y1(t)
2 + c3y1(t)y2(t) + y1(t)f1

+ y1(t)F + y2(t) (f2 + z(t) + τ̇1) (34)

where (26) and (29) are used and the argument which is omitted
of f2 is same as that in (26).

Step.3: Define a new variable E(t) as

E(t) = z(t) + c̄2y2(t) + c3y1(t) (35)

where the positive constant c̄2 is to be determined later.
Inserting (35) into (34) to replace z(t), we have

V̇y = − c̄1y1(t)
2 − c̄2y2(t)

2 + y1(t)f1 + y1(t)F

+ y2(t)E(t) + y2(t)f2 +
c̄1
c3
y2(t)ẏ1(t). (36)

Using (35), then (27) can be written as

Ė = c4E(t) + rα(l(t), t) + c̄2ẏ2(t) + c3ẏ1(t)

− c4c̄2y2(t)− c4c3y1(t) + U(t). (37)

Choosing U(t) in (37) as

U(t) = −ā0E(t)− rα(l(t), t) + c4c̄2y2(t) + c4c3y1(t) (38)

we then have

Ė(t) = −kEE(t) + c̄2ẏ2(t) + c3ẏ1(t) (39)

where kE = ā0 − c4 > 0 by choosing the control gain ā0.
Through the transformations (10), (11), (28), (29), and (35),

the original system-(u(x, t), v(x, t), X(t), s1(t), s2(t), z(t))
is converted to the target system-(α(x, t), β(x, t), X(t), y1(t),
y2(t), E(t)) where the ODE states and PDE states are coupled.
The exponential stability of the target system will be clear in the
following Lyapunov analysis via choosing control parameters
c̄1, c̄2, ā0.

C. Stability Analysis of State-Feedback
Closed-Loop System

1) Controller: Substituting (10), (11), (28), (29), (31), (35)
into (38), we get the controller expressed by the original states

U(t) = −ā0z(t) + (c4 − ā0)c̄2s2(t)− ru(l(t), t)

+ (c4 − ā0)

(
c̄1c̄2
c3

+ c3

)(
s1(t)−

∫ l(t)

0

ψ(l(t), y)u(y, t)dy

−
∫ l(t)

0

φ(l(t), y)v(y, t)dy − γ(l(t))X(t)

)
. (40)

The pending control parameters c̄1, c̄2, ā0 will be determined
in the following stability analysis. Note that the control law
(40) uses the signal u(l(t), t). In order to ensure the control law
is sufficiently regular, we will require the initial value u(x, 0)
to be in H1(0, L) which is defined as H1(0, L) = {u|u ∈
L2(0, L), ux ∈ L2(0, L)}, where L2(0, L) is the usual Hilbert
space and the positive constant L given in Assumption 3 is the
maximum value of the time-varying PDE domain.

2) Stability of Closed-Loop System: Theorem 1: If initial
values (u(x, 0), v(x, 0)) ∈ H1(0, L), for some c̄1, c̄2, ā0, the
closed-loop system consisting of the plant (1)–(8) and the control
law (40) is exponentially stable in the sense of that there exist
positive constants Υ1, λ1 such that

Ωa(t) ≤ Υ1Ωa(0)e
−λ1t (41)

where

Ωa(t) = ‖u(·, t)‖2 + ‖v(·, t)‖2 + |X(t)|2 + s1(t)
2

+ s2(t)
2 + z(t)2. (42)

‖u(·, t)‖2 is a compact notation for
∫ l(t)

0 u2(x, t)dx.
Proof: We start from studying the stability of the target sys-

tem. The equivalent stability property between the target system
and the original system is ensured due to the invertibility of the
transformations (10), (11), (28), (29), and (35).

First, we study the stability proof of the target system via
Lyapunov analysis of the PDE-ODE subsystem. Second, com-
bining the Lyapunov analysis of ODEs in the input channel
in Section III-B, Lyapunov analysis of the overall system is
provided, where the control parameters c̄1, c̄2, ā0 in the control
law (40) are determined.

a) Lyapunov analysis for the PDE-ODE subsystem-
(α(x, t), β(x, t), X(t)): Consider now a Lyapunov function

V1(t) = XT (t)P1X(t) +
a1
2

∫ l(t)

0

eδ1xβ(x, t)2dx

+
b1
2

∫ l(t)

0

e−δ1xα(x, t)2dx (43)
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where P1 = PT
1 > 0 is the solution to the Lyapunov equation

P1(A+Bκ)+(A+Bκ)TP1=−Q1, for some Q1=Q1
T >0.

The positive parameters a1, b1, δ1 are to be chosen later.
Taking the derivative of V1(t), we arrive at

V̇1(t) ≤ −η1|X(t)|2 − η2β(0, t)
2 − η3

∫ l(t)

0

β(x, t)2dx

− η4

∫ l(t)

0

α(x, t)2dx− η5α(l(t), t)
2 + η6β(l(t), t)

2 (44)

where the detailed process of calculating V̇1(t) are shown
in Appendix-B, where the choices of a1, b1, δ1 and the ex-
pressions of positive constants η1, η2, η3, η4 are also given.
Defining vmax = maxt∈[0,∞){|l̇(t)|}, we know η5 = (p1 −
vmax)

b1
2 e

−δ1L > 0 by recalling Assumption 4, and η6 = (p2 +

vmax)
a1

2 e
δ1L > 0.

b) Lyapunov analysis for the overall system: Consider a
Lyapunov function as

V (t) = V1(t) + Vy(t) +
1

2
E(t)2. (45)

Defining

Ω1(t) = ‖β(·, t)‖2 + ‖α(·, t)‖2 + |X(t)|2

+ y1(t)
2 + y2(t)

2 + E(t)2 (46)

we have

θ1aΩ1(t) ≤ V (t) ≤ θ1bΩ1(t) (47)

for some positive constants θ1a and θ1b.
Taking the derivative of (45), using (36), (39), and (44) with

(A.1)–(A.8), recalling Assumptions 1, 2, 4, we have

V̇ (t) ≤ −λV (t)− η̂0β(0, t)
2 − η̂1α(l(t), t)

2 (48)

for some positive λ, and η̂0 η̂1 are positive constants given as
(C.12)–(C.13). The detailed process of calculating V̇ (t) is shown
in Appendix-C, where the choices of the control parameters
c̄1, c̄2, a0 in the ODE backstepping to tolerate the PDE per-
turbations are presented.

We thus have

V (t) ≤ V (0)e−λt. (49)

It then follows that Ω1(t) ≤ θ1b
θ1a

Ω1(0)e
−λt by recalling (47).

Defining

Ξ(t) = ‖u(·, t)‖2 + ‖v(·, t)‖2 + |X(t)|2

+ s1(t)
2 + s2(t)

2 + z(t)2 (50)

applying Cauchy–Schwarz inequality and transformations (10),
(11), (18), (19), (28), (29), and (35), it is straightforward to obtain

θ̄1aΞ(t) ≤ Ω1(t) ≤ θ̄1bΞ(t) (51)

for some positive θ̄1a and θ̄1b. Therefore, we have

Ξ(t) ≤ θ1bθ̄1b
θ1aθ̄1a

Ξ(0)e−λt. (52)

Thus, (41) is achieved with

Υ1 =
θ1bθ̄1b
θ1aθ̄1a

, λ1 = λ. (53)

Then the proof of Theorem 1 is completed. �

3) Exponential Convergence of Control Input: In Theo-
rem 1, we have proved that all PDEs and ODEs are exponentially
stable in the closed-loop system including the plant (1)–(8)
and the controller (40). Moreover, next we would prove the
controller U(t) (40) in the closed-loop system is also bounded
and exponentially convergent to zero.

Considering (40) and the exponential stability result proved
in Theorem 1, the exponential convergence of the control input
requires the exponential convergence of the signal u(l(t), t)
additionally, which can be obtained by proving the exponential
stability estimate of ‖ux(·, t)‖+ ‖vx(·, t)‖. Before proving the
exponential convergence of the control input, we propose a
lemma first.

Lemma 1: For any initial data (u(x, 0), v(x, 0)) ∈ H1(0, L),
the exponential stability estimate of the closed-loop system
(u(x, t), v(x, t)) is obtained in the sense of that there exist
positive constants Υ1a and λ1a such that

‖ux(·, t)‖2 + ‖vx(·, t)‖2

≤ Υ1a

(
Ξ(0) + ‖ux(·, 0)‖2 + ‖vx(·, 0)‖2

)
e−λ1at (54)

where Ξ(t) is given in (50).
The proof of Lemma 1 is shown in Appendix-D. Lemma

1 will be used in proving the exponential convergence and
boundedness of the controller (40) in the following theorem.

Theorem 2: In the closed-loop system including the plant
(1)–(8) and the controller U(t) (40), there exist positive con-
stants λ2 andΥ2 making thatU(t) is bounded and exponentially
convergent to zero in the sense of

|U(t)| ≤ Υ2(‖u(·, 0)‖2 + ‖v(·, 0)‖2 + |X(0)|2 + s1(0)
2

+ s2(0)
2 + z(0)2 + ‖ux(·, 0)‖2 + ‖vx(·, 0)‖2) 1

2 e−λ2t. (55)

Proof: The proof is shown in Appendix-E. �

IV. OBSERVER DESIGN AND STABILITY ANALYSIS

In Section III, a state-feedback controller which requires
distributed states is designed to stabilize the original sys-
tem exponentially. However, it is always difficult to mea-
sure the distributed states in practice. We propose an output-
feedback control law which only requires measurements
u(l(t), t), v(l(t), t), z(t) at the controlled boundary of the PDE,
i.e., a “collocated” type, based on a state observer designed in
this section. In Section IV-A, the observer design is presented,
where the observer gains are determined in two transformation
processes from the observer error system to an intermediate
observer error system, and then to a target observer error system.
The exponential stability of the observer error system is proved
in Section IV-B.

A. Observer Design

1) Structure of Observer and Error Dynamics: Using the
measurementsu(l(t), t), v(l(t), t), z(t), the observer is designed
as

˙̂
X(t) = AX̂(t) +Bv̂(0, t)

+ Γ0(t)(u(l(t), t)− û(l(t), t)) (56)

ût(x, t) = − p1ûx(x, t) + c1v̂(x, t)

+ Γ1(x, t)(u(l(t), t)− û(l(t), t)) (57)

v̂t(x, t) = p2v̂x(x, t) + c2û(x, t)

Authorized licensed use limited to: Xiamen University. Downloaded on February 27,2022 at 02:16:18 UTC from IEEE Xplore.  Restrictions apply. 



WANG AND KRSTIC: OUTPUT-FEEDBACK CONTROL OF AN EXTENDED CLASS OF SANDWICHED HYPERBOLIC PDE-ODE SYSTEMS 2593

+ Γ2(x, t)(u(l(t), t)− û(l(t), t)) (58)

û(0, t) = qv̂(0, t) + CX̂(t) (59)

v̂(l(t), t) = v(l(t), t) (60)

˙̂s1(t) = c3ŝ2(t) + f1

(
ŝ1(t),

∫ l(t)

0

û(y, t)dy

)

+ μ1(v(l(t), t)− ŝ1(t))) (61)

˙̂s2(t) = f2(ŝ1(t), ŝ2(t), û(l(t), t)) + z(t)

+ μ2(v(l(t), t)− ŝ1(t))) (62)

˙̂z(t) = c4ẑ(t) + ru(l(t), t) + μ3(z(t)− ẑ(t)) + U(t)
(63)

where Γ0(t),Γ1(x, t),Γ2(x, t), μ1, μ2, μ3 are observer gains to
be determined later. Note that the initial values û(x, 0), v̂(x, 0)
are required to be in H1(0, L) to be consistent with Section III.
Define observer errors as

[X̃(t), ũ(x, t), ṽ(x, t), s̃1(t), s̃2(t), z̃(t)]

= [X(t), u(x, t), v(x, t), s1(t), s2(t), z(t)]

− [X̂(t), û(x, t), v̂(x, t), ŝ1(t), ŝ2(t), ẑ(t)]. (64)
According to (56)–(63) and (1)–(8), the error dynamics can be
obtained as

˙̃X(t) = AX̃(t) +Bṽ(0, t)− Γ0(t)ũ(l(t), t) (65)

ũt(x, t) = −p1ũx(x, t) + c1ṽ(x, t)− Γ1(x, t)ũ(l(t), t)
(66)

ṽt(x, t) = p2ṽx(x, t) + c2ũ(x, t)− Γ2(x, t)ũ(l(t), t) (67)

ũ(0, t) = qṽ(0, t) + CX̃(t) (68)

ṽ(l(t), t) = 0 (69)

˙̃s1(t) = c3s̃2(t) + f̃1 − μ1s̃1(t) (70)

˙̃s2(t) = f̃2 − μ2s̃1(t) (71)

˙̃z(t) = −kz z̃(t) (72)
where kz = μ3 − c4 > 0 by choosing the control parameter μ3,
and

f̃1 = f1

(
s1(t),

∫ l(t)

0

u(y, t)dy

)

− f1

(
ŝ1(t),

∫ l(t)

0

û(y, t)dy

)
(73)

f̃2 = f2 (s1(t), s2(t), u(l(t), t))

− f2 (ŝ1(t), ŝ2(t), û(l(t), t)) . (74)
Defining

S̃(t) = [s̃1(t), s̃2(t)]
T (75)

(70), (71) can be rewritten as

˙̃S(t) = (As − BC2)S̃(t) +
[
f̃1, f̃2

]T
(76)

where

As =

(
0 c3
0 0

)
, C2 = [1, 0], B = [μ1, μ2]

T . (77)

Note that As − BC2 can be a Hurwitz matrix by choosing B =
[μ1, μ2]

T , because (As, C2) is observable.
2) Transformation to Intermediate Observer Error

System: In order to remove domain couplings in ṽ (67)
which affect the system stability [33], we apply the invertible
backstepping transformation [33] for the PDE states (ũ, ṽ)

ũ(x, t) = α̃(x, t)−
∫ l(t)

x

φ̄(x, y)α̃(y, t)dy (78)

ṽ(x, t) = β̃(x, t)−
∫ l(t)

x

ψ̄(x, y)α̃(y, t)dy (79)

to convert the error dynamics (65)–(72) to the intermediate
observer error system as

˙̃X(t) = AX̃(t) +Bβ̃(0, t)−B

∫ l(t)

0

ψ̄(0, y)α̃(y, t)dy

− Γ0(t)α̃(l(t), t) (80)

α̃t(x, t) = − p1α̃x(x, t) +

∫ l(t)

x

M̄(x, y)β̃(y, t)dy

+ c1β̃(x, t) (81)

β̃t(x, t) = p2β̃x(x, t) +

∫ l(t)

x

N̄(x, y)β̃(y, t)dy (82)

α̃(0, t) = qβ̃(0, t) + CX̃(t)

+

∫ l(t)

0

(φ̄(0, y)− qψ̄(0, y))α̃(y, t)dy (83)

β̃(l(t), t) = 0. (84)

˙̃S(t) = (As − BC2)S̃(t) + [f̃1, f̃2]
T (85)

˙̃z(t) = −kz z̃(t). (86)

By matching (65)–(69) and (80)–(84), the kernel functions φ̄, ψ̄
on D1 = {0 ≤ x ≤ y ≤ l(t)} should satisfy

− p1φ̄x(x, y)− p1φ̄y(x, y)− c1ψ̄(x, y) = 0 (87)

ψ̄(x, x) =
c2

p1 + p2
(88)

− p1ψ̄y(x, y) + p2ψ̄x(x, y)− c2φ̄(x, y) = 0. (89)

The boundary condition of φ̄ is set as

φ̄(0, y) = qψ̄(0, y)− CK0(y) (90)

where K0(x) is shown later. The choice of (90) would be clear
later.
M̄(x, y), N̄(x, y) in (80)–(86) satisfy

M̄(x, y) =

∫ y

x

φ̄(x, z)M̄(z, y)dz − c1φ̄(x, y) (91)

N̄(x, y) =

∫ y

x

ψ̄(x, z)M̄(z, y)dz + c1ψ̄(x, y). (92)

Observer gains Γ1(x, t) and Γ2(x, t) are obtained as

Γ1(x, t) = l̇(t)φ̄(x, l(t))− p1φ̄(x, l(t)) (93)

Γ2(x, t) = l̇(t)ψ̄(x, l(t))− p1ψ̄(x, l(t)). (94)
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3) Transformation to Target Observer Error System: In
order to decouple the ODE (80) with the PDE state-α̃ (β̃ reaches
to zero after a finite time because of (84), (82)) and make the
state matrix in the ODE (80) Hurwitz, where the observer gain
Γ0(t) would be defined, we apply a transformation as

Ỹ (t) = X̃(t)−
∫ l(t)

0

K0(x)α̃(x, t)dx

−
∫ l(t)

0

K1(x)β̃(x, t)dx (95)

to convert (80) into

˙̃Y (t) = (A− L0C)Ỹ (t)−
∫ l(t)

0

[ ∫ x

0

K0(y)M̄(y, x)dy

+

∫ x

0

K1(y)N̄(y, x)dy

]
β̃(x, t)dx (96)

where A− L0C is a Hurwitz matrix by choosing L0 recalling
that (A,C) is observable, and K0(x), K1(x) are determined
following.

Substituting (95) into (96), considering (80)–(84), using in-
tegration by parts and a change of the order of integration in a
double integral, we have[

K0(l(t))p1 − l̇(t)K0(l(t))− Γ0(t)
]
α̃(l(t), t)

−
∫ l(t)

0

[
K ′

0(x)p1 −AK0(x) +Bψ̄(0, x)
]
α̃(x, t)dx

+ (L0 −K0(0)p1)α̃(0, t) +

∫ l(t)

0

[−K0(x)c1 +K ′
1(x)p2

+(A− L0C)K1(x)] β̃(x, t)dx

+ [K1(0)p2 − L0q +B]β̃(0, t) = 0. (97)

For (97) to hold, K0(x), K1(x) should satisfy

K ′
0(x)p1 −AK0(x) +Bψ̄(0, x) = 0 (98)

K0(0) =
L0

p1
(99)

K ′
1(x)p2 + (A− L0C)K1(x)−K0(x)c1 = 0 (100)

K1(0) =
L0q −B

p2
. (101)

Lemma 2: Equations (87)–(90), (98)–(101) of conditions of
kernels φ̄(x, y), ψ̄(x, y),K0(x),K1(x) are well-posed.

Proof: After swapping positions of arguments as B.9-B.10
in [3], i.e., changing the domain D1 to D, conditions (87)–(90),
(98), (99) of φ̄, ψ̄,K0 have the same form of the conditions (12)–
(17) on the kernelsφ, ψ, γwhich have been proved as well-posed
in [32] and [36]. The explicit solutions of K1(x) are then easy
to obtain considering the initial value problem (100), (101). �

The observer gain Γ0(t) is obtained as

Γ0(t) = −l̇(t)K0(l(t)) +K0(l(t))p1. (102)

The target observer error system thus can be written as

˙̃Y (t) = (A− L0C)Ỹ (t)−
∫ l(t)

0

[ ∫ x

0

K0(y)M̄(y, x)dy

+

∫ x

0

K1(y)N̄(y, x)dy

]
β̃(x, t)dx (103)

α̃t(x, t) = −p1α̃x(x, t) +

∫ l(t)

x

M̄(x, y)β̃(y, t)dy

+ c1β̃(x, t) (104)

β̃t(x, t) = p2β̃x(x, t) +

∫ l(t)

x

N̄(x, y)β̃(y, t)dy (105)

α̃(0, t) = qβ̃(0, t) + CỸ (t) +

∫ l(t)

0

CK1(y)β̃(y, t)dy

(106)

β̃(l(t), t) = 0. (107)

˙̃S(t) = (As − BC2)S̃(t) +
[
f̃1, f̃2

]T
(108)

˙̃z(t) = −kz z̃(t). (109)

The following theorem shows the exponential stability of the
observer error system (65)–(72), which is obtained through the
stability analysis of the target observer error system (103)–(109)
and applying the invertibility of the transformations. Note that
the initial data (ũ(x, 0), ṽ(x, 0)) of the observer error system
belongs to H1(0, L), which is defined by the initial conditions
of the plant and the observer via (64).

B. Stability Analysis of Observer Error System

Theorem 3: Considering the observer system (56)–(63) with
observer gains Γ0(t) (102), Γ1(x, t) (93), Γ2(x, t) (94), the
observer error system (65)–(72) is exponentially stable in the
sense of that there exist positive constants Υe, λe such that

Ωe(t) ≤ ΥeΩe(0)e
−λet (110)

where

Ωe(t) = ‖ũ(·, t)‖2 + ‖ṽ(·, t)‖2 +
∣∣∣X̃(t)

∣∣∣2 + s̃1(t)
2

+ s̃2(t)
2 + z̃(t)2. (111)

Proof: a) Analysis for the observer error subsystems-
(ũ(x, t), ṽ(x, t), X̃(t), z̃(t)): (108) z̃(t) is an exponentially sta-
ble ODE because of kz > 0. From (105), (107), the β̃-dynamics
is independent of α̃ and β̃(x, t) ≡ 0 after tf0 = L

p2
, i.e., when

the boundary condition (107) has propagated through the whole
domain. The subsystem (103)–(107) becomes

˙̃Y (t) = (A− L0C)Ỹ (t) (112)

α̃t(x, t) = −p1α̃x(x, t) (113)

α̃(0, t) = CỸ (t) (114)

for t ≥ tf0. Ỹ (t) is exponentially convergent to zero because
A− L0C in the ODE (112) is Hurwitz. Define

Va(t) = Ỹ (t)TPaỸ (t) +
ba
2

∫ l(t)

0

e−xα̃(x, t)2dx (115)

where ba is a positive constant, andPa = PT
a > 0 is the solution

to the Lyapunov equation Pa(A− L0C) + (A− L0C)
TPa =

−Qa for some Qa = Qa
T > 0.

Taking the derivative of Va(t) along (112)–(114), we have

V̇a(t) ≤ −λmin(Qa)Ỹ (t)2 − p1ba

∫ l(t)

0

e−xα̃(x, t)α̃x(x, t)dx
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+
ba
2
l̇(t)e−l(t)α̃((t), t)2

≤ −
(

λmin(Qa)− 1

2
p1ba|C|2

)
Ỹ (t)2

− 1

2
ba(p1 − l̇(t))e−l(t)α̃(l(t), t)2

− 1

2
p1ba

∫ l(t)

0

e−xα̃(x, t)2dx. (116)

Choosing ba <
2λmin(Qa)

p1|C|2 and recalling Assumption 4, yields

V̇a(t) ≤ −λaVa(t)− λa1α̃(l(t), t)
2 (117)

for some positive λa, λa1. The exponential stability result in the
sense of |Ỹ (t)|2 + ‖α̃(·, t)‖2 + ‖β̃(·, t)‖2 is obtained.

Remark 2: Even though β̃(x, t) ≡ 0 and (112)–(114) holds
for t ≥ tf0 (if β̃(0, 0) = 0, they hold at t = 0, and the obtained
exponential stability straightforwardly begins from t = 0), the
obtained exponential stability also holds at the beginning t = 0,
because any transient in the finite time [0, tf0) can be bounded
by an exponentially decay signal with arbitrary decay rate and
an appropriate overshoot coefficient.

According to the invertible transformation (78)–(79), (95),
we obtain the exponential stability in the sense of |X̃(t)|2 +
‖ũ(·, t)‖2+‖ṽ(·, t)‖2.

b) Analysis for the observer error subsystem-S̃(t): Next we
conduct the stability analysis for the ODE-S̃(t) (108). Consider
a Lyapunov function

Vs(t) = S̃(t)TP0S̃(t) (118)

where P0 is a positive definite and symmetric solution of

(As − BC2)
TP0 + P0(As − BC2) + γ̄2PT

0 P0 + IT < 0
(119)

with γ̄2 = γ21 + 2γ22 and γ1, γ2 being positive Lipschitz con-
stants shown in Appendix-F. The existence of the solution P0 of
(119) and the procedure to define the observer gain B are shown
in [24, Sec. 4].

Taking the derivative of Vs(t) (118), through the calculation
process presented in Appendix-F where Assumption 2 is re-
called, we achieve

V̇s(t) ≤ −σsVs(t) + γ̂21
γ21 + 2γ22

‖α̃(·, t)‖2

+
γ22

γ21 + 2γ22
α̃(l(t), t)2 (120)

for some positive σs.
Consider a Lyapunov function

Ve(t) = Vs(t) +Rα̃Va(t). (121)

Taking the derivative of (121), recalling (120), (117), and choos-
ing large enough positive constant Rα̃, we have

V̇e(t) ≤ −σsVs(t)− 1

2
Rα̃λaVa(t)

−
(
1

4
Rα̃λabae

−L − γ̂21
γ21 + 2γ22

)
‖α̃(·, t)‖2

−
(
Rα̃λa1 − γ22

γ21 + 2γ22

)
α̃(l(t), t)2

Fig. 2. Block diagram of output-feedback closed-loop system consist-
ing of the plant (1)–(8), the observer (56)–(63), and the controller (123).

≤ −σeVe(t) (122)

for some positiveσe. Considering (121), (118), we obtain |S̃(t)|2
is exponentially convergent to zero.

Finally, using the obtained exponential stability result in the
sense of‖ũ(·, t)‖2 + ‖ṽ(·, t)‖2 + |X̃(t)|2 + |z̃(t)|2 in 1) and the
exponential stability result of |S̃(t)|2 in 2) with (75), the proof
of Theorem 3 is completed. �

Moreover, we propose the following lemma which shows
the exponential stability estimates in the sense of ‖ṽx(·, t)‖2 +
‖ũx(·, t)‖2.

Lemma 3: The exponential stability estimate of the observer
error system (ũ(x, t), ṽ(x, t)) is obtained in the sense of that
there exist positive constants Υ3a, λ3a such that

‖ṽx(·, t)‖2 + ‖ũx(·, t)‖2

≤ Υ3a

(
Ωe(t) + ‖ũx(·, 0)‖2 + ‖ṽx(·, 0)‖2

)
e−λ3at.

Proof: Take the spatial derivative of (104), (105), and the

time derivative of (103), (106), (107), where ˙̃
β(l(t), t) =

l̇(t)β̃x(l(t), t) + β̃t(l(t), t) = (l̇(t) + p2)β̃x(l(t), t) = 0 is
used, which results in β̃x(l(t), t) = 0 because of l̇(t) + p2 
= 0
recalling Assumption 4. Through the similar steps in the section
a) of the proof of Theorem 3, using the spatial derivative of the
transformation (78), (79), recalling Theorem 3, then Lemma 3
is obtained. �

V. STABILITY OF OUTPUT-FEEDBACK CLOSED-LOOP SYSTEM

Replacing all the original states in the state-feedback con-
troller (40) by the observer states, the output-feedback controller
can be written as

Uof (t) = −ā0ẑ(t) + (c4 − ā0)c̄2ŝ2(t)− rû(l(t), t)

+ (c4 − ā0)

(
c̄1c̄2
c3

+ c3

)(
ŝ1(t)−

∫ l(t)

0

ψ(l(t), y)û(y, t)dy

−
∫ l(t)

0

φ(l(t), y)v̂(y, t)dy − γ(l(t))X̂(t)

)
. (123)

The output-feedback closed-loop system consists of the plant
(1)–(8), the observer (56)–(63), and the output-feedback con-
troller (123). The block diagram of the output-feedback closed-
loop system is shown in Fig. 2. The following theorem shows the
exponential stability of the output-feedback closed-loop system
and the exponential convergence of the controller (123).

Theorem 4: Considering the plant (1)–(8), with the observer
(56)–(63), and the output-feedback controller (123), initial val-
ues (u(·, 0), v(·, 0)) ∈ H1(0, L), (û(·, 0), v̂(·, 0)) ∈ H1(0, L),
the closed-loop system has the following properties.
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1) There exist positive constants Υ4 and λ4 such that

Ω(t) ≤ Υ4Ω(0)e
−λ4t (124)

where

Ω(t) = ‖v̂(·, t)‖2 + ‖û(·, t)‖2 +
∣∣∣X̂(t)

∣∣∣2 + ŝ1(t)
2 + ŝ2(t)

2

+ ẑ(t)2 + ‖v(·, t)‖2 + ‖u(·, t)‖2 + |X(t)|2

+ s1(t)
2 + s2(t)

2 + z(t)2. (125)

2) The output-feedback controller (123) is bounded and ex-
ponentially convergent to zero.

Proof: 1) Rewrite (56)–(63) as
˙̂
X(t) = AX̂(t) +Bv̂(0, t) + Γ0(t)ũ(l(t), t) (126)

ût(x, t) = − p1ûx(x, t) + c1v̂(x, t)

+ Γ1(x, t)ũ(l(t), t) (127)

v̂t(x, t) = p2v̂x(x, t) + c2û(x, t)

+ Γ2(x, t)ũ(l(t), t) (128)

û(0, t) = qv̂(0, t) + CX̂(t) (129)

v̂(l(t), t) = ŝ1(t) + s̃1(t) (130)

˙̂s1(t) = c3ŝ2(t) + f1

(
ŝ1(t),

∫ l(t)

0

û(y, t)dy

)

+ μ1s̃1(t) (131)

˙̂s2(t) = f2(ŝ1(t), ŝ2(t), û(l(t), t)) + ẑ(t) + z̃(t)

+ μ2s̃1(t) (132)

˙̂z(t) = c4ẑ(t) + rû(l(t), t) + rũ(l(t), t)

+ μ3z̃(t) + Uof (t) (133)

which has the same structure with the original system (1)–(8)
plus the injections ũ(l(t), t), s̃1(t), z̃(t). Applying transforma-
tions (10), (11), (18), (19), (28), (29), and (35) (note that all
states in the transformation should be added a “hat,” such as
“û”), through same steps in Section III, we can arrive the tar-
get system-(α̂, β̂, X̂, ŷ1, ŷ2, Ê , ũ(l(t), t), z̃(t), s̃1(t), ˙̃s1(t)), the
main body-(α̂, β̂, X̂, ŷ1, ŷ2, Ê) of which has the same struc-
ture with the exponentially stable target system in the
state-feedback design, plus several observer error injections
ũ(l(t), t), z̃(t), s̃1(t), ˙̃s1(t). Recalling Theorem 3 and Lemma
3, we have ũ(l(t), t), z̃(t), s̃1(t) are exponentially convergent to
zero. According to (70), (F.2), we have

˙̃s1(t)
2 ≤ 3c23s̃2(t)

2 + 3f̃21 + 3μ2
1s̃1(t)

2

≤ 3c23s̃2(t)
2 + 3γ̂21‖α̃(·, t)‖2 + 3(μ2

1 + γ21)s̃1(t)
2. (134)

Thus, ˙̃s1(t) is also exponentially convergent to zero recalling
Theorem 3.

Define a Lyapunov function as

Vof = X̂(t)TP2X̂(t) +
ā1
2

∫ l(t)

0

eδ̄1xβ̂(x, t)2dx+
1

2
Ê(t)2

+
b̄1
2

∫ l(t)

0

e−δ̄1xα̂(x, t)2dx+
1

2
ŷ1(t)

2 +
1

2
ŷ2(t)

2

+RV eVe(t) +Rz z̃(t)
2 (135)

Fig. 3. Moving boundary and its velocity. (a) l(t). (b) |l̇(t)|.

where ā1, b̄1, δ̄1, RV e, Rz are positive constants, and P2 =
PT
2 > 0 being the solution to the Lyapunov equation P2(A+
Bκ) + (A+Bκ)TP2 = −Q2 for some Q2 = Q2

T > 0.
Through the same steps in Theorem 1, using (134), (122),

(109), we obtain V̇of ≤ −λofVof (t) for some positive λof .
We then obtain Ω4(t) ≤ Υ4aΩ4(0)e

−λof t, where Ω4(t) =

‖α̂(·, t)‖2 + ‖β̂(·, t)‖2 + |X̂(t)|2 + ŷ1(t)
2 + ŷ2(t)

2 + Ê(t)2+
|S̃(t)|2 + |Ỹ (t)|2 + ‖α̃(·, t)‖2 + ‖β̃(·, t)‖2 + z̃(t)2, for some
positive Υ4a. Applying all transformations and their inverses,
through same steps with (50)–(52), we have

Ω̄(t) ≤ Υ4bΩ̄(0)e
−λof t (136)

where Υ4b is a positive constant, and

Ω̄(t) = ‖û(·, t)‖2 + ‖v̂(·, t)‖2 +
∣∣∣X̂(t)

∣∣∣2
+ ŝ1(t)

2 + ŝ2(t)
2 + ẑ(t)2 + ‖ũ(·, t)‖2 + ‖ṽ(·, t)‖2

+ |X̃(t)|2 + s̃1(t)
2 + s̃2(t)

2 + z̃(t)2.

Then recalling (64) and applying Cauchy–Schwarz inequality,
we thus obtain (124).

2) In order to prove the boundedness and exponential con-
vergence of the output-feedback controller (123), considering
the above exponential stability results in 1), the exponential
convergence to zero of û(l(t), t) is required additionally. It
can be obtained by the exponential stability estimate in the
sense of ‖ûx(·, t)‖+ ‖v̂x(·, t)‖ which can be proved through
same steps as Lemma 1 with recalling Lemma 3 and Theorem
3. Then through the same steps in Theorem 2, we have the
output-feedback controller (123) is bounded and exponentially
convergent to zero as well.

The proof of Theorem 4 is completed. �

VI. SIMULATION

Consider the system given by

Ẋ(t) = 0.4X(t) + v(0, t) (137)

ut(x, t) = −ux(x, t) + 0.5v(x, t) (138)

vt(x, t) = vx(x, t) + 0.5u(x, t) (139)

u(0, t) = v(0, t) +X(t), v(l(t), t) = s1(t) (140)

ṡ1(t) = s2(t) + s1(t)
2 +

∫ l(t)

0

u(x, t)dx (141)

ṡ2(t) = s1(t)s2(t) + u(l(t), t) + z(t) (142)

ż(t) = 0.5z(t) + u(l(t), t) + U(t) (143)

x ∈ [0, l(t)]. l(t) is a preknown function decreasing from l(0) =
1 to 0.2 during 10 s, as shown in Fig 3. The initial values are
given as u(x, 0) = 3 sin(4πx), v(x, 0) = 3 sin(4πx), X(0) =
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Fig. 4. Open-loop responses of ‖u(·, t)‖ and ‖v(·, t)‖.

Fig. 5. Responses of ‖u(·, t)‖ and ‖v(·, t)‖ under the proposed output-
feedback controller.

u(0, 0)− v(0, 0), s1(0) = v(l(0), 0), s2(0) = z(0) = 0. The
initial values of the observer are given as û(x, 0) = u(x, 0) +
0.2 sin(2π(l(0)− x)), v̂(x, 0) = v(x, 0) + 0.2 sin(2π(l(0)−
x)), X̂(0) = û(0, 0)− v̂(0, 0), ŝ1(0) = v̂(l(0), 0), ŝ2(0) =

s2(0) + 0.5, Ẑ(0) = Z(0) + 0.5, where the additional terms are
initial observer errors.

The simulation is performed by the finite-difference method
for the discretization in time and space after converting the time-
varying domain PDE to a fixed domain PDE via introducing
ξ̌ = x

l(t) , and then the time step and space step are chosen as
0.001 and 0.02 respectively. Kernels (12)–(17), (87)–(90), (98),
(99) used in the control input are also solved by the finite dif-
ference method. The control parameters are chosen as c1 = 80,
c2 = 150, ā0 = 350, κ = −10, L0 = 10, μ1 = μ2 = μ3 = 5.
The simulation results are shown following.

Comparing Fig. 4 which shows the open-loops responses
of ‖u(·, t)‖, ‖v(·, t)‖ and Fig. 5 which gives the closed-loop
responses of ‖u(·, t)‖, ‖v(·, t)‖, as one can observe, in the latter
case convergence to zero is achieved, whereas the states grow
unbounded in the former case. According to Fig. 6, we see that
the responses of the ODE-z(t), the nonlinear ODE-(s1(t), s2(t))
and the ODE-X(t) at the opposite boundary converge to zero
under the proposed output-feedback controller. Moreover, in
Figs. 7 and 8, it can be observed that the proposed observer
converge to the actual plant for both PDE and ODE states. Note
that because v(l(t), t) and z(t) are measurable, s̃1(t) and z̃(t)
are at a small magnitude and fast convergent to zero, the curves
of which are omitted here due to the space limit. In Fig. 9, it is
shown that the observer-based output-feedback control input is
bounded and convergent to zero.

VII. CONCLUSION

In this article, we address the output-feedback control problem
for a particular class of coupled hyperbolic PDEs sandwiched be-
tween a cascade of an ODE and a nonlinear ODE on the actuated

Fig. 6. Responses of ODE states z(t), s1(t), s2(t),X(t) under the
proposed output-feedback controller. (a) z(t). (b) s1(t). (c) s2(t). (d)
X(t).

Fig. 7. Observer errors of ‖ũ(·, t)‖, ‖ṽ(·, t)‖.

Fig. 8. Observer errors of s̃2(t), X̃(t). (a) s̃2(t). (b) X̃(t).

Fig. 9. Output-feedback control input.

side and a linear ODE on the opposite side, with a PDE domain
that is time-varying. First, a state-feedback control design is
proposed to exponentially stabilize the overall system via a series
of transformations, and then a state-observer is constructed to
recover the overall system only using available boundary values
at the actuated side, to build a “collocated” type observer-based
output-feedback controller. The exponential stability results of
the closed-loop system and the observer error system, and the
boundedness and exponential convergence of the control input
are proved in this article. A simulation example is conducted to
verify the effectiveness of the proposed controller and observer.
The proposed design in this article can be applied into brake
control of a mining cable elevator.
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In the future work, it is of interest to extend the control design
to a more complicated and practical case with some system
parameters being unknown, where an adaptive design should
be developed.

APPENDIX

A. Expression of F

F(β(l(t), β(0, t), α(l(t), t), α(0, t), β(x, t), α(x, t), X(t))

= h1(l(t))β(l(t), t) + h2(l(t))β(0, t)

+ h3(l(t))α(l(t), t) + h4(l(t))α(0, t)

+

∫ l(t)

0

h5(l(t), y)β(y, t)dy

+

∫ l(t)

0

h6(l(t), y)α(y, t)dy +H7(l(t))X(t) (A.1)

where

h1(l(t)) = −p2φ(l(t), l(t))− l̇(t)φ(l(t), l(t)) (A.2)

h2(l(t)) = p2φ(l(t), 0)− γ(l(t))B (A.3)

h3(l(t)) = p1ψ(l(t), l(t))− l̇(t)ψ(l(t), l(t)) (A.4)

h4(l(t)) = −p1ψ(l(t), 0) (A.5)

h5(l(t), y) =
(
p2φ(l(t), l(t)) + l̇(t)φ(l(t), l(t))

)
M(l(t), y)

+ p2φy(l(t), y)− c1ψ(l(t), y)− l̇(t)φx(l(t), y)

−
∫ l(t)

y

(
p2φy(l(t), z)− c1ψ(l(t), z)

− l̇(t)φx(l(t), z)
)
M(z, y)dz (A.6)

h6(l(t), y) = p1ψy(l(t), y) + c2φ(l(t), y) + l̇(t)ψx(l(t), y)

−
(
p2φ(l(t), l(t)) + l̇(t)φ(l(t), l(t))

)
D(l(t), y)

−
∫ l(t)

y

(
p2φy(l(t), z)− c1ψ(l(t), z)

− l̇(t)φx(l(t), z)
)
D(z, y)dz (A.7)

H7(l(t)) =
(
p2φ(l(t), l(t)) + l̇(t)φ(l(t), l(t))

)
J (l(t))

− γ(l(t))A− l̇(t)γ′(l(t))− (p2φ(l(t), 0)− γ(l(t))B)J (0)

−
∫ l(t)

0

(
p2φy(l(t), y)− c1ψ(l(t), y)

− l̇(t)φx(l(t), y)
)
J (y)dy. (A.8)

B. Calculation of V̇1(t)

Taking the time derivative of (43) along (20)–(23), we obtain

V̇1(t) ≤ −λmin(Q1)|X(t)|2 + 2XTP1Bβ(0, t)

+
p2
2
a1e

δ1l(t)β(l(t), t)2 − p2
2
a1β(0, t)

2

+
a1 l̇(t)

2
eδ1l(t)β(l(t), t)2 +

b1 l̇(t)

2
e−δ1l(t)α(l(t), t)2

− p2
2
δ1a1

∫ l(t)

0

eδ1xβ(x, t)2dx

− p1
2
δ1b1

∫ l(t)

0

e−δ1xα(x, t)2dx

− p1
2
b1e

−δ1l(t)α(l(t), t)2 +
p1
2
b1α(0, t)

2

+ b1c1

∫ l(t)

0

e−δ1xα(x, t)

(
β(x, t)−

∫ x

0

D(x, y)α(y, t)dy

−
∫ x

0

M(x, y)β(y, t)dy − J (x)X(t)

)
dx. (B.1)

Recalling (23), using Young’s inequality and Cauchy–Schwarz
inequality for the last part in (B.1) yields the existence of ξ > 0
such that

V̇1(t) ≤ −
(
1

2
λmin(Q1)− p1b1 |C0|2

)
|X(t)|2

−
(
p2
2
a1 − p1b1q

2 − 4 |P1B|
λmin(Q1)

)
β(0, t)2

−
(
p2
2
δ1a1 − b1ξ − b1

ξ

δ1

)∫ l(t)

0

β(x, t)2dx

−
(
p2δ1b1

2
− b1ξ

δ1
− ξb21

λmin(Q1)
− b1ξ

)
e−δ1 L

∫ l(t)

0

α(x, t)2dx

− (p1 − l̇(t))
b1
2
e−δ1l(t)α(l(t), t)2

+ (p2 + l̇(t))
a1
2
eδ1l(t)β(l(t), t)2 (B.2)

where

ξ = max

{
c1
4
[D̄(1 + L) + M̄], LJ̄ 2c21,

1

2
c1,

c1
4
D̄L
}

(B.3)

and

D̄ = max
0≤y≤x≤L

{|D(x, y)|} (B.4)

M̄ = max
0≤y≤x≤L

{|M(x, y)|} (B.5)

J̄ = max
0≤x≤L

{|J (x)|}. (B.6)

Choose parameters b1, δ1, a1 to satisfy

0 < b1 <
λmin(Q1)

2p1|C0|2 (B.7)

δ1 > max

{
1,

2

p2

(
2ξ +

ξb1
λmin(Q1)

)}
(B.8)

a1 > max

{
8 |P1B|

p2λmin(Q1)
+ 2q2b1

p1
p2
,
2b1ξ

p2δ1
+

2b1ξ

p2δ21

}
(B.9)

we arrive at (44), where

η1 =
1

2
λmin(Q1)− p1b1 |C0|2 > 0 (B.10)

η2 =
p2
2
a1 − p1b1q

2 − 4 |P1B|
λmin(Q1)

> 0 (B.11)

η3 =
p2
2
δ1a1 − b1ξ − b1

ξ

δ1
> 0 (B.12)

Authorized licensed use limited to: Xiamen University. Downloaded on February 27,2022 at 02:16:18 UTC from IEEE Xplore.  Restrictions apply. 



WANG AND KRSTIC: OUTPUT-FEEDBACK CONTROL OF AN EXTENDED CLASS OF SANDWICHED HYPERBOLIC PDE-ODE SYSTEMS 2599

η4 =

(
p2δ1b1

2
− b1ξ

δ1
− ξb21

λmin(Q1)
− b1ξ

)
e−δ1 L > 0.

(B.13)

C. Calculation of V̇ (t)

Taking the time derivative of (45) and recalling (39) (36), and
(44) with (A.1)–(A.8), we have

V̇ ≤ −η1|X(t)|2 − η2β(0, t)
2 − η3

∫ l(t)

0

β(x, t)2dx

− η4

∫ l(t)

0

α(x, t)2dx− η5α(l(t), t)
2 + η6β(l(t), t)

2

− c̄1y1(t)
2 − c̄2y2(t)

2 + y1(t)f1

+ y1(t)

(
h1(l(t))β(l(t), t) + h2(l(t))β(0, t)

+ h3(l(t))α(l(t), t) + h4(l(t))α(0, t)

+

∫ l(t)

0

h5(l(t), y)β(y, t)dy +

∫ l(t)

0

h6(l(t), y)α(y, t)dy

+H7(l(t))X(t)

)
+ y2(t)E(t) + y2(t)f2 +

c̄1
c3
y2(t)ẏ1(t)

− kEE(t)2 + E(t)c̄2ẏ2(t) + E(t)c3ẏ1(t). (C.1)

Recalling Assumptions 1 and 2 and (28), (29), (31), we have

f21 ≤ γf1
(
4y1(t)

2 + 4‖β(·, t)‖2

+5‖α(·, t)‖2 + 4|X(t)|2) (C.2)

f22 ≤ γf2

((
4 +

2c̄21
c23

)
y1(t)

2 + 4‖β(·, t)‖2 + 4‖α(·, t)‖2

+ 4|X(t)|2 + 2y2(t)
2 + α(l(t), t)2

)
(C.3)

where γf1, γf2 are positive constants depending on kernels
D,M,J . The omitted arguments of f1, f2 are same as those
in (25) and (26).

Applying Young’s inequality, Cauchy–Schwarz inequality
into the ninth and tenth terms, and y2(t)E(t) + y2(t)f2 +
c̄1
c3
y2(t)ẏ1(t) + E(t)c̄2ẏ2(t) + E(t)c3ẏ1(t) in (C.1), where (26),

(29), (31), (35) are used to rewrite ẏ2(t) as ẏ2(t) = f2 + E(t)−
c̄2y2(t)− c3y1(t) +

c̄1
c3
ẏ1(t), using (C.2)–(C.3) to replace the

resulting f21 , f
2
2 , recalling (23), (28) to rewrite the resulting

α(0, t)2, β(l(t), t)2, respectively, we have

V̇ ≤ −
(
η1 − r7

∣∣H̄7

∣∣2 − 2r4h̄
2
4 |C0|2 − 4r8γf1 − 4r9γf2

− 4r11γf2

)
|X(t)|2 − (η2 − h̄22r2 − 2r4h̄

2
4q

2
)
β(0, t)2

−
(
η3 − r5 h

2
5maxL− 4r8γf1 − 4r9γf2

− 4r11γf2

)∫ l(t)

0

β(x, t)2dx−
(
η4 − r6 h

2
6maxL

− 5r8γf1 − 4r9γf2 − 4r11γf2

)∫ l(t)

0

α(x, t)2dx

− (η5 − h̄23r3 − r9γf2 − r11γf2
)
α(l(t), t)2

−
(
c̄1 − 1− 1

4r2
− 1

4r3
− 1

4r4
− 1

4r5
− 1

4r6
− 1

4r7
− η6

− 1

4r8
− 4r8γf1 − h̄1 −

(
4 +

2c̄21
c23

)
r9γf2

−
(
4 +

2c̄21
c23

)
r11γf2

)
y1(t)

2

−
(
c̄2 − 1

4r9
− c̄21

4c23r10
− 3

2
− 2r11γf2 − 2r9γf2

)
y2(t)

2

−
(
(kE − c̄2)− 1

2
− c̄42

4
− c̄22

4r11
− c̄22c̄

2
1

4r12c23
− c̄22c

2
3

4
− c23

4r13

)
E(t)2

+ (r10 + r12 + r13)ẏ1(t)
2 (C.4)

where r1, . . . , r13 are positive constants from using Young’s
inequality,

h5max = max
x∈[0,L],l(t)∈[0,L]

{|h5(x, l(t))|} (C.5)

h6max = max
x∈[0,L],l(t)∈[0,L]

{|h6(x, l(t))|} (C.6)

and h̄1, h̄2, h̄3, h̄4, H̄7 are maximum values of |h1(l(t))|,
|h2(l(t))|, |h3(l(t))|, |h4(l(t))|, |H7(l(t))| for l(t) ∈ [0, L] in
(A.2)–(A.8).

According to (25), (28), (29), and (31) with (A.1)–(A.8), we
have

ẏ1(t)
2 ≤ ξ̄c

(
c̄1y1(t)

2 + y1(t)
2 + y2(t)

2 + f21 + β(0, t)2

+ α(l(t), t)2 + α(0, t)2 + ‖β(·, t)‖2

+ ‖α(·, t)‖2 +X(t)2
)

(C.7)

for some positive constants ξ̄c depending on kernels D,M,J
and gains (A.2)–(A.8).

Inserting (C.7) into (C.4) to replace ẏ1(t)2 with using (C.2),
we arrive at

V̇ ≤ −
(
η1 − r7

∣∣H̄7

∣∣2 − 2r4h̄
2
4 |C0|2 − 4r8γf1 − 4r9γf2

− 4r11γf2 − (r10 + r12 + r13)ξ̄c − 2(r10 + r12 + r13)ξ̄c|C0|2

− 4γf1(r10 + r12 + r13)ξ̄c

)
|X(t)|2 −

(
η2 − h̄22r2 − 2r4h̄

2
4q

2

− (1 + 2q2)(r10 + r12 + r13)ξ̄c

)
β(0, t)2 −

(
η3 − r5 h

2
5maxL

− 4r8γf1 − 4r9γf2 − 4r11γf2 − (r10 + r12 + r13)ξ̄c

− 4γf1(r10 + r12 + r13)ξ̄c

)∫ l(t)

0

β(x, t)2dx−
(
η4 − 5r8γf1

− r6 h
2
6maxL− 4r9γf2 − 4r11γf2 − (r10 + r12 + r13)ξ̄c
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− 5γf1(r10 + r12 + r13)ξ̄c

)∫ l(t)

0

α(x, t)2dx− (η5 − h̄23r3

−r9γf2 − r11γf2 − (r10 + r12 + r13)ξ̄c
)
α(l(t), t)2

−
(
c̄1 − 1− 1

4r2
− 1

4r3
− 1

4r4
− 1

4r5
− 1

4r6
− 1

4r7

− η6 − 1

4r8
− 4r8γf1 − h̄1 −

(
4 +

2c̄21
c23

)
(r9 + r11)γf2

− (1 + 4γf1 + c̄1)(r10 + r12 + r13)ξ̄c

)
y1(t)

2

−
(
c̄2 − 1

4r9
− c̄21

4c23r10
− 3

2
− 2r11γf2 − 2r9γf2

− (r10 + r12 + r13)ξ̄c

)
y2(t)

2 −
(
ā0 − c4 − c̄2 − 1

2

− c̄42
4

− c̄22
4r11

− c̄21c̄
2
2

4r12c23
− c̄22c

2
3

4
− c23

4r13

)
E(t)2 (C.8)

where kE = ā0 − c4 is recalled. Choosing small enough posi-
tive r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 and making the
control parameters c̄1, c̄2, ā0 to satisfy

c̄1 > 1 +
1

4r2
+

1

4r3
+

1

4r4
+

1

4r5
+

1

4r6
+

1

4r7
+ η6

+
1

4r8
+ 4r8γf1 + h̄1 (C.9)

c̄2 >
1

4r9
+

c̄21
4c23r10

+
3

2
+ 2r11γf2

+ 2r9γf2 + (r10 + r12 + r13)ξ̄c, (C.10)

ā0 > c4 + c̄2 +
1

2
+
c̄42
4

+
c̄22
4r11

+
c̄21c̄

2
2

4r12c23

+
c̄22c

2
3

4
+

c23
4r13

(C.11)

we obtain (48) with

η̂0 = η2 − h̄22r2 − 2r4h̄
2
4q

2

− (1 + 2q2)(r10 + r12 + r13)ξ̄c > 0 (C.12)

η̂1 = η5 − h̄23r3 − r9γf2 − r11γf2

− (r10 + r12 + r13)ξ̄c > 0. (C.13)

D. Proof of Lemma 1

Differentiating (21) and (22) with respect to x, differentiating
(23) with respect to t, we have

αxt(x, t) = −p1αxx(x, t) + c1βx(x, t)− c1J ′(x)X(t)

− c1D(x, x)α(x, t)− c1M(x, x)β(x, t)

− c1

∫ x

0

Dx(x, y)α(y, t)dy

− c1

∫ x

0

Mx(x, y)β(y, t)dy (D.1)

βxt(x, t) = p2βxx(x, t) (D.2)

αx(0, t) = −q p2
p1
βx(0, t)− 1

p1
(C0(A+Bκ)− c1J (0))X(t)

− 1

p1
(C0B − c1)β(0, t). (D.3)

Defining

Ā =
b2
2

∫ l(t)

0

e−δ2xαx(x, t)
2dx+

a2
2

∫ l(t)

0

eδ2xβx(x, t)
2dx

(D.4)

where b2 is an arbitrary positive constant which can adjust the
convergence rate and the positive constants δ2, a2 will be chosen
later.

Taking the derivative of (D.4) along (D.1), (D.2), we obtain

˙̄A = − p1
2
b2e

−δ2l(t)αx(l(t), t)
2 +

p1
2
b2αx(0, t)

2

+
b2 l̇(t)

2
e−δ2l(t)αx(l(t), t)

2 − p1
2
b2δ2

∫ l(t)

0

e−δ2xαx(x, t)
2dx

+ (p2 + l̇(t))
a2
2
eδ2l(t)βx(l(t), t)

2 − p2
2
a2βx(0, t)

2

− p2
2
a2δ2

∫ l(t)

0

eδ2xβx(x, t)
2dx

−
∫ l(t)

0

b2e
−δ2xαx(x, t)c1D(x, x)α(x, t)dx

−
∫ l(t)

0

b2e
−δ2xαx(x, t)c1M(x, x)β(x, t)dx

−
∫ l(t)

0

b2e
−δ2xαx(x, t)c1

∫ x

0

Dx(x, y)α(y, t)dydx

−
∫ l(t)

0

b2e
−δ2xαx(x, t)c1

∫ x

0

Mx(x, y)β(y, t)dydx

+

∫ l(t)

0

b2e
−δ2xαx(x, t)c1βx(x, t)dx

−
∫ l(t)

0

b2e
−δ2xαx(x, t)c1J ′(x)X(t)dx. (D.5)

Using Young’s inequality and Cauchy–Schwarz inequality into
the last six terms in (D.5) yields the existence of ξ2 > 0 such that

˙̄A(t) ≤ −(p1 − l̇(t))
b2
2
e−δ2l(t)αx(l(t), t)

2 +
p1
2
b2αx(0, t)

2

+ (p2 + l̇(t))
a2
2
eδ2l(t)βx(l(t), t)

2 − p2
2
a2βx(0, t)

2

−
(
p1
2
b2δ2 − 4ξ2b2 − 2ξ2b2

δ2

)∫ l(t)

0

e−δ2xαx(x, t)
2dx

−
(
p2
2
a2δ2 − ξ2b2

)∫ l(t)

0

eδ2xβx(x, t)
2dx

+

(
ξ2b2 +

ξ2b2
δ2

)∫ l(t)

0

e−δ2xα(x, t)2dx+ ξ2b2|X(t)|2

+

(
ξ2b2 +

ξ2b2
δ2

)∫ l(t)

0

eδ2xβ(x, t)2dx. (D.6)
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Note that αx(0, t)
2 in (D.6) can be replaced by

αx(0, t)
2 ≤ 3

p22
p21
q2βx(0, t)

2 +
3

p21
(C0B − c1)

2β(0, t)2

+
3

p21
|C0(A+Bκ) + c1J (0)|2 |X(t)|2 (D.7)

using Cauchy–Schwarz inequality into (D.3). Recalling
(22), (25) with (A.1)–(A.8), (28), (29), (31), (C.2),
using Cauchy–Schwarz inequality, the positive term
(p2 + l̇(t))a2

2 e
δ2l(t)βx(l(t), t)

2 in (D.6) can be replaced as

(p2 + l̇(t))
a2
2
eδ2l(t)βx(l(t), t)

2

≤ ξ̄2y2(t)
2 + ξ̄3y1(t)

2 + ξ̄4β(0, t) + ξ̄5α(l(t), t)
2 + ξ̄6α(0, t)

2

+ ξ̄7‖α(·, t)‖2 + ξ̄8‖β(·, t)‖2 + ξ̄9|X(t)|2 (D.8)

for some positive ξ̄i, i = 2, . . . , 9.
We propose a Lyapunov function

V2(t) = Ā(t) +R1V (t). (D.9)

Define the norm as

Ω2(t) = ‖βx(·, t)‖2 + ‖αx(·, t)‖2 + ‖β(·, t)‖2

+ ‖α(·, t)‖2 + |X(t)|2 + y1(t)
2 + y2(t)

2 + E(t)2. (D.10)

We have

θ2aΩ2(t) ≤ V2(t) ≤ θ2bΩ2(t) (D.11)

for some positive θ2a and θ2b.
Taking the derivative of (D.9) and recalling (D.6)–(D.8), (48),

we then get

V̇2(t) =
˙̄A+R1V̇

≤ −
(
p1 − l̇(t)

) b2
2
e−δ2l(t)αx(l(t), t)

2

−
(
p2
2
a2 − 3p22q

2

2b2p1

)
βx(0, t)

2

−
(
p1
2
b2δ2 − 4ξ2b2 − 2ξ2b2

δ2

)∫ l(t)

0

e−δ2xαx(x, t)
2dx

−
(
p2
2
a2δ2 − ξ2b2

)∫ l(t)

0

eδ2xβx(x, t)
2dx− R1

2
λV (t)

−
(
R1η̂0 − 3b2

2p1
(C0B − c1)

2 − ξ̄4 − 2ξ̄6q
2

)
β(0, t)2

−
(
R1

2
θ1aλ − ξ̄2

)
y2(t)

2 −
(
R1

2
θ1aλ − ξ̄3

)
y1(t)

2

−
(
R1

2
θ1aλ − ξ2b2 − ξ2b2

δ2
− ξ̄7

)∫ l(t)

0

α(x, t)2dx

−
(
R1

2
θ1aλ − ξ2b2e

δ2L − ξ2b2
δ2

eδ2L − ξ̄8

)∫ l(t)

0

β(x, t)2dx

−
(
R1

2
θ1aλ − ξ2b2 − 3b2

2p1
|c1J (0) + C0(A+Bκ)|2

− ξ̄9 − 2ξ̄6|C0|2
)
|X(t)|2 − (R1η̂1 − ξ̄5)α(l(t), t)

2

≤ − σ1V2(t)−
(
R1η̂1 − ξ̄5

)
α(l(t), t)2

−
(
p1 − l̇(t)

) b2
2
e−δ2l(t)αx(l(t), t)

2

− η̂2β(0, t)
2 − η̂3βx(0, t)

2 (D.12)

for some positive σ1, by choosing

δ2 > max

{
1,

12ξ2
p1

}
, a2 > max

{
2ξ2b2
p2δ2

,
3p2q

2

b2p1

}
(D.13)

and sufficiently large R1. Note η̂2 = R1η̂0 − 3b2
2p1

(C0B −
c1)

2 − ξ̄4 − 2ξ̄6q
2 > 0, η̂3 = p

2a2 − 3p2
2q

2

2b2p1
> 0 and R1η̂1 −

ξ̄5 > 0 according to the above choices ofR1,a2, and p1 − l̇(t) >
0 by recalling Assumption 4. We thus have V̇2(t) ≤ −σ1V2(t).
It then follows that V2(t) ≤ V2(0)e

−σ1t. Recalling (D.11), we
obtain

Ω2(t) ≤ θ2b
θ2a

Ω2(0)e
−σ1t. (D.14)

Differentiating (18), (19) with respect to x, we have

ux(x, t) = αx(x, t) (D.15)

vx(x, t) = βx(x, t)−
∫ x

0

Dx(x, y)α(y, t)dy

−
∫ x

0

Mx(x, y)β(y, t)dy − J ′(x)X(t)

−D(x, x)α(x, t)−M(x, x)β(x, t). (D.16)

Similarly differentiating (10), (11) with respect to x, together
with (D.15), (D.16), using (10), (11), (18), (19), (28), (29),
and (35), we have θ̄2aΞ1(t) ≤ Ω2(t) ≤ θ̄2bΞ1(t) for some
positive θ̄2a, θ̄2b, where Ξ1(t) is defined as Ξ1(t) = Ξ(t) +
‖ux(·, t)‖2 + ‖vx(·, t)‖2. Therefore, one obtain

‖ux(·, t)‖2 + ‖vx(·, t)‖2 ≤ Ξ1(t) ≤ θ̄2bθ2b
θ̄2aθ2a

Ξ1(0)e
−σ1t.

Thus (54) is obtained with

Υ1a =
θ̄2bθ2b
θ̄2aθ2a

, λ1a = σ1. (D.17)

The proof of Lemma 1 is completed.

E. Proof of Theorem 2

Applying Cauchy–Schwarz inequality into (40), we have

|U(t)|2 ≤ ξd

(
|s1(t)|2 + |s2(t)|2 + |z(t)|2 + |X(t)|2

+ |u(l(t), t)|2 + ‖u(·, t)‖2 + ‖v(·, t)‖2
)

(E.1)

for some positive ξd.
Applying Cauchy–Schwarz inequality and recalling (4), (5),

we have

|u(l(t), t)| ≤ |u(0, t)|+
√
L‖ux(·, t)‖

≤ |qv(0, t)|+ |CX(t)|+
√
L‖ux(·, t)‖

≤ |q||s1(t)|+ |q|
√
L‖vx(·, t)‖

+ |C||X(t)|+
√
L‖ux(·, t)‖. (E.2)
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Considering (E.1), (E.2), using Theorem 1 and Lemma 1, we
have the control input (40) is bounded by

|U(t)| ≤ Υ2

(
Ξ(0) + ‖ux(·, 0)‖2 + ‖vx(·, 0)‖2

) 1
2 e−λ2t.

(E.3)

Then (55) is obtained by recalling (50). The proof of Theorem
2 is completed.

F. Calculation of V̇s(t)

Taking the derivative of (118) along (108), we have

V̇s(t) ≤ S̃(t)T
(
(As − BC2)

TP0 + P0(As − BC2)
)
S̃(t)

+ 2S̃(t)TP0f̃ (F.1)

where f̃ = [f̃1, f̃2]
T . Recalling (73), (74), according to

Assumption 2, we have

f̃21 =

∣∣∣∣f1
(
s1,

∫ l(t)

0

u(x, t)dx

)
− f1

(
ŝ1,

∫ l(t)

0

û(x, t)dx

)∣∣∣∣
2

≤ γ21 |s1 − ŝ1|2 + γ21

∣∣∣∣∣
∫ l(t)

0

(u(x, t)− û(x, t))dx

∣∣∣∣∣
2

≤ γ21 s̃
2
1 + γ̂21‖α̃(·, t)‖2 (F.2)

f̃22 = |f2(s1, s2, u(l(t), t))− f2(ŝ1, ŝ2, û(l(t), t))|2

≤ γ22 |(s1, s2, u(l(t), t))− (ŝ1, ŝ2, û(l(t), t))|2

≤ γ22 s̃
2
1 + γ22 s̃

2
2 + γ22 α̃(l(t), t)

2 (F.3)

where γ̂1 is a positive constant and (78) is used. Then

f̃2 = f̃21 + f̃22

≤ (γ21 + γ22)s̃1(t)
2 + γ22 s̃2(t)

2 + γ̂21‖α̃(·, t)‖2 + γ22 α̃(l(t), t)
2

≤ (γ21 + 2γ22)
∣∣∣S̃(t)∣∣∣2 + γ̂21‖α̃(·, t)‖2 + γ22 α̃(l(t), t)

2.

Thus, we have

2S̃(t)TP0f̃(t) ≤ (γ21 + 2γ22)
∣∣∣P0S̃(t)

∣∣∣2 + 1

γ21 + 2γ22
|f̃(t)|2

≤ (γ21 + 2γ22)
∣∣∣P0S̃(t)

∣∣∣2 + ∣∣∣S̃(t)∣∣∣2
+

γ̂21
γ21 + 2γ22

‖α̃(·, t)‖2 + γ22
γ21 + 2γ22

α̃(l(t), t)2

= (γ21 + 2γ22)S̃(t)
TPT

0 P0S̃(t) + S̃(t)T S̃(t)

+
γ̂21

γ21 + 2γ22
‖α̃(·, t)‖2 + γ22

γ21 + 2γ22
α̃(l(t), t)2 (F.4)

where Young’s inequality is used. Substituting (F.4) into (F.1),
yields

V̇s(t) ≤ S̃(t)T ((Ā− BC2)
TP0 + P0(Ā− BC2))S̃(t)

+ (γ21 + 2γ22)S̃
T (t)PT

0 P0S̃(t) + S̃(t)T S̃(t)

+
γ̂21

γ21 + 2γ22
‖α̃(·, t)‖2 + γ22

γ21 + 2γ22
α̃(l(t), t)2

≤ S̃(t)T
(
(Ā− BC2)

TP0 + P0(Ā− BC2)

+ (γ21 + 2γ22)P
T
0 P0 + IT

)
S̃(t)

+
γ̂21

γ21 + 2γ22
‖α̃(·, t)‖2 + γ22

γ21 + 2γ22
α̃(l(t), t)2. (F.5)

Recalling (119), we arrive (120).
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