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Event-Triggered Output-Feedback Backstepping
Control of Sandwich Hyperbolic PDE Systems
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Abstract—Motivated by vibration control of a mining ca-
ble elevator avoiding frequent actions of a massive actua-
tor, which is a hydraulic cylinder driving a head sheave, we
present an event-triggered output-feedback backstepping
boundary controller for 2 × 2 coupled hyperbolic partial
differential equations (PDEs) sandwiched by two ordinary
differential equations (ODEs), through a two-step design in-
cluding an output-feedback low-pass-filter-based backstep-
ping boundary stabilization law and the subsequent design
of a dynamic event-triggering mechanism. The existence
of a minimal dwell-time between two triggering times, and
exponential convergence in the event-based closed-loop
system are proved in this article. In numerical simulations,
the proposed control design is validated in the application
of axial vibration control of a mining cable elevator.

Index Terms—Backstepping, boundary control, dis-
tributed parameter system, event-triggered control.

I. INTRODUCTION

Motivation: A mining cable elevator is a vital device used
to transport the minerals and miners between thousands of
meters underground and the ground surface. Cable plays an
indispensable role in the mining elevators due to its advantages
of resisting relatively large axial loads and low bending and
torsional stiffness, which are helpful to transporting heavy load
in large depth. However, a cost to pay for the use of a cable is the
appearance of undesirable mechanical vibrations, which lead to
premature fatigue fracture, because of the compliance property
or the stretching and contracting abilities of cables. Active
vibration control is one economic way to suppress vibrations
in the long compliant cable because the main structure of the
mining elevator does not need to be changed. For example,
vibration control forces applied at the head sheave of the mining
cable elevator are designed in [44]–[46] based on the PDE model
of the mining cable elevator by using backstepping.

When implementing the PDE backstepping laws to prac-
tical mining cable elevators, two challenges caused by high-
frequency elements in the designed control law appear: 1) the
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massive actuator consisting of the hydraulic cylinder and head
sheave in Fig. 1 is incapable of supporting the fast changing
control input because of the low natural frequency. 2) The high-
frequency components in the control input may in turn become
a vibration source for the cable. It is, thus, required to reduce
the actuation frequency and meanwhile ensure the effective
suppression of the vibrations in the mining cable elevator.

Designing sampling schemes applied into the control input
is a potential solution. Designs of sampled-data control laws of
parabolic and hyperbolic partial differential equations (PDEs)
were presented in [23], [30] and [12], [31], respectively. Com-
pared with the periodic sampled-data control where unnecessary
movements of the massive actuator may exist, event-triggered
control where the massive actuator is only animated at the neces-
sary times, which are determined by an event-triggering mecha-
nism of evaluating the operation of the elevator, is more feasible
for the mining cable elevator, from the point of view of energy
saving.

Boundary Control of Coupled Hyperbolic PDEs: Vibration
dynamics of a cable with material damping is described as
2× 2 coupled transport PDEs, converted from wave PDEs with
the viscous damping term via Riemann transformation [46].
The boundary control problem of such a system of coupled
transport PDEs has been a research focus for the past ten years,
with many authors contributing to this topic. Basic boundary
stabilization problem of a 2× 2 coupled linear transport PDEs
by backstepping was addressed in [11] and [42]. It was further
extended to boundary control of a n+ 1 system in [35]. For
a more general coupled linear transport PDE system where
the number of PDEs in either direction is arbitrary, boundary
stabilization law was designed in [17] and [26] by backstepping.
Adaptive control for unknown system parameters or disturbance
rejection for external periodic disturbances, have been further
developed in [4], [5] and [2], [3], [14], [15], respectively.

Boundary Control of Sandwich PDEs: Vibration dynamics
of the mining cable elevator is described by coupled hyper-
bolic PDEs sandwiched by two ordinary differential equations
(ODEs), which model the cage and the hydraulic actuator dy-
namics connected with two ends of the mining cable. State-
feedback control of a coupled hyperbolic PDE sandwich system
was proposed in [8], [9], and [43]. Based on observer designs,
output-feedback control of the coupled hyperbolic PDE sand-
wich system was designed in [16], [37], and [48]. The boundary
control designs of sandwich systems containing other type PDEs
were also proposed in [6], [27], and [28] (transport PDE), [32]
(viscous Burgers PDE), and [47] (heat PDE).

Event-Triggered Control: An event-triggering mechanism is
to be designed to reduce the actuation frequency of the control
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Fig. 1. Relationship between the sandwich hyperbolic PDE system and the mining cable elevators consisting of hydraulic-driven head sheave,
mining cable, and cage.

input while ensure the effective vibration suppression. Most of
current designs of the event-triggering mechanism (ETM) are for
ODE systems, such as [24], [25], [33], [40], [41]. There are few
studies about event-based control of PDE systems. Selivanov
and Fridman [39] and Yao and El-Farra [50] proposed event-
triggered control schemes for distributed (in-domain) control of
PDEs. For the boundary control of PDEs, an event-triggered
control law was originally proposed in [18] and [19] for hyper-
bolic PDEs with dissipativity boundary conditions. Afterwards,
event-triggered boundary control of reaction-diffusion PDEs
was also dealt with in [21]. In the meantime, a state-feedback
event-based boundary controller of 2× 2 coupled linear hyper-
bolic PDEs without a proximal reflection term at the boundary
was first proposed in [20]. Incorporating this proximal reflec-
tion term, observer-based event-triggered boundary control of
2× 2 coupled linear hyperbolic PDEs was further developed
in [22], which assumed that the product of the proximal and
distal reflection gains is smaller than one-half and the proximal
reflection term was completely preserved in the closed-loop
system. For the mining cable elevator model, this assumption
is required to be relieved and the proximal reflection term at
the PDE boundary needs to be cancelled completely or partially
via design of an event-triggered control input acting at an ODE
in the input channel of the PDE, which makes the design and
analysis of the event-based closed-loop system challenging.

Contributions of this article.
1) Compared with [20], [22], which designed an event-

triggered backstepping controller for 2× 2 hyperbolic
PDEs, in this article, besides two additional ODEs, the
restriction on the proximal and distal reflection gains
in 2× 2 hyperbolic PDEs is relieved and the proximal
reflection term is compensated by the event-based con-
trol law which goes through the input ODE, which is
stabilized meanwhile.

2) In comparison to the recent results about exponential sta-
bilization of sandwich hyperbolic systems [8], [16], [37],
[43], [49] by continuous-in-time control laws, this article
achieves exponential convergence through an event-based
control law. This is the first result of event-triggered
backstepping boundary control of sandwich PDE
systems.

3) To the best of our knowledge, this is also the first result of
applying the event-triggered scheme in vibration control
of PDE-modeled string-payload vibrating systems, which
physically describe elevators, cranes, etc.

Organization: The rest of this article is organized as follows.
The concerned model is described in Section II. A state observer
is designed in Section III. A low-pass-filter-based backstepping
output-feedback boundary controller is presented in Section IV.
The event-triggering mechanism is designed and the existence of
a minimal dwell-time between two triggering times is proved in
Section V. The achievement of exponential convergence in the
event-based closed-loop system is proved via Lyapunov analysis
in Section VI. The controller is applied into axial vibration
control of a mining cable elevator in Section VII. The conclusion
and future work are provided in Section VIII.

Notation: We adopt the following notation. The symbol R−
denotes the set of negative real numbers, whose complement on
the real axis is R+ := [0,+∞). For an interval Ū ⊆ R+ and
a set Ω̄ ⊆ R, by C0(Ū ; Ω̄), we denote the class of continuous
mappings on Ū , which take values in Ω̄. We use the notation
L2(0, 1) for the standard space of the equivalence class of
square-integrable, measurable functions defined on (0, 1) and
‖f‖ = (

∫ 1

0 f(x)
2dx)

1
2 < +∞ for f ∈ L2(0, 1). For an integer

k ≥ 1, Hk(0, 1) denotes the Sobolev space of functions in
L2(0, 1) with all its weak derivatives up to order k in L2(0, 1).
The usual Euclidean norm is denoted by | · |. For an interval
I ⊆ R+, the space C0(I;L2(0, 1)) is the space of continuous
mappings I � t �→ u(x.t) ∈ L2(0, 1).

II. PROBLEM FORMULATION

The plant considered in this article is

Ẏ (t)= A0Y (t) + E0w(0, t) +B0U(t) (1)

z(0, t) = pw(0, t) + C0Y (t) (2)

zt(x, t) = −q1zx(x, t)− c1w(x, t)− c1z(x, t) (3)

wt(x, t) = q2wx(x, t)− c2w(x, t)− c2z(x, t) (4)

w(1, t) = qz(1, t) + CX(t) (5)

Ẋ(t) = AX(t) +Bz(1, t) (6)
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∀(x, t) ∈ [0, 1]× [0,∞). The vector Y (t) ∈ Rn̄×1, X(t) ∈
Rn×1 are ODE states, where positive constants n̄, n are the
dimensions of two ODEs. The scalars z(x, t) ∈ R, w(x, t) ∈
R are the states of the 2× 2 coupled hyperbolic PDEs. The
positive constants q1 and q2 are the transport velocities. The
constants c1, c2 are arbitrary and p, q satisfy Assumption 3
shown below. The vector E0 ∈ Rn̄×1 is arbitrary. The control
input U(t) ∈ R is to be designed. The plant initial condi-
tions are taken as (Y (0), z(x, 0), w(x, 0), X(0)) ∈ χ = Rn̄ ×
Hnr+1(0, 1)2 × Rn where nr is the relative degree of (1).
The matrices in the ODE subsystems A ∈ Rn×n, A0 ∈ Rn̄×n̄,
B ∈ Rn×1, B0 ∈ Rn̄×1, C ∈ R1×n, C0 ∈ R1×n̄ are subject to
Assumptions 1 and 2.

Assumption 1: The pairs (A,B) and (A0, B0) are control-
lable. The pairs (A,C) and (A0, C0) are observable.

Based on this assumption, there exist constant matrices
K,L,K0, L0 to make the following matrices Hurwitz:

Â = A−BK (7)

Ā = A− LC (8)

Â0 = A0 −B0K0 (9)

Ā0 = A0 − L0C0. (10)

The following assumption for the ODE in the input channel
ensures a stable left inversion of the system (A0, B0, C0) [34].

Assumption 2: (C0, A0, B0) satisfy

det

([
sI −A0 B0

C0 0

])
�= 0 (11)

for all s ∈ C,�(s)≥0.
The following assumption about the PDE subsystem parame-

ters, which will be used in the low-pass filter design, are satisfied
in the mining cable elevator model.

Assumption 3: The plant parameters p, q satisfy

|pq|e
(

c2
q2

+
c1
q1

)
< 1 and q �= 0.

The control objective of this article is to exponentially sta-
bilize (1)–(6) by designing an event-triggered boundary control
input using only a collocated measurement w(0, t).

It is shown in Fig. 1 that axial vibration dynamics of the mining
cable elevator consisting of the hydraulic actuator, mining cable,
and cage is described by a sandwich wave PDE system. It is
also shown in the figure that this system can be transformed,
using a Riemann transformation, into a 2× 2 coupled transport
PDE sandwich system, considered in this article, and for which
Assumptions 1–3 are satisfied. A specific wave PDE-modeled
mining cable elevator, the physical meaning of the states and
parameters, and the according transformation to the considered
plant (1)–(6), are shown in Section VII.

III. OBSERVER

In order to estimate the distributed states, which usually
cannot be measured but are required in the controller, a state
observer for the plant (1)–(6) is designed in this section using
only the measurement w(0, t) at the actuated boundary, i.e.,
using only the sensing of signals at the head sheaves of the
mining cable elevator. The observer is postulated with the same
structure as in [16], namely, as follows:

˙̂
Y (t) = A0Ŷ (t) + E0w(0, t) +B0U(t)

+Ψ0(w(0, t)− ŵ(0, t)) (12)

ẑ(0, t) = pw(0, t) + C0Ŷ (t) (13)

ẑt(x, t) = −q1ẑx(x, t)− c1ŵ(x, t)− c1ẑ(x, t)

+ Ψ1(x)(w(0, t)− ŵ(0, t)) (14)

ŵt(x, t) = q2ŵx(x, t)− c2ŵ(x, t)− c2ẑ(x, t)

+ Ψ2(x)(w(0, t)− ŵ(0, t)) (15)

ŵ(1, t) = qẑ(1, t) + CX̂(t) (16)

˙̂
X(t) = AX̂(t) +Bẑ(1, t) + Ψ3(w(0, t)− ŵ(0, t)) (17)

where Ψ0,Ψ1(x),Ψ2(x),Ψ3 are observer gains to be deter-
mined. The control input U(t) can be replaced by an event-
triggered control law Ud(t) presented later in the event-based
closed-loop system.

Define observer error states as

[z̃(x, t), w̃(x, t), X̃(t), Ỹ (t)]

=[z(x, t), w(x, t), X(t), Y (t)]−[ẑ(x, t), ŵ(x, t), X̂(t), Ŷ (t)].
(18)

Apply the backstepping transformation

z̃(x, t) = α̃(x, t)−
∫ x

0

φ̄(x, y)α̃(y, t)dy

−
∫ x

0

φ̄1(x, y)β̃(y, t)dy − γ̄(x)Ỹ (t) (19)

w̃(x, t)= β̃(x, t)−
∫ x

0

ψ̄(x, y)α̃(y, t)dy

−
∫ x

0

ψ̄1(x, y)β̃(y, t)dy − ϕ̄(x)Ỹ (t) (20)

and

Z̃(t) = X̃(t)−
∫ 1

0

K1(y)α̃(y, t)dy −
∫ 1

0

K2(y)β̃(y, t)dy

(21)

where the conditions, which are well-posed, on the functions
φ̄, φ̄1, ψ̄, ψ̄1, γ̄, ϕ̄ K1, K2 are given in (A.1)–(A.16) in the
Appendix. The observer error system-(z̃, w̃, X̃, Ỹ ) can be con-
verted to an exponentially stable target observer error system as
follows:

α̃(0, t) = 0 (22)

α̃t(x, t) = − q1α̃x(x, t)− c1α̃(x, t) (23)

β̃t(x, t) = q2β̃x(x, t)− c2β̃(x, t) (24)

β̃(1, t) = qα̃(1, t) + CZ̃(t) + (ϕ̄(1)− qγ̄(1))Ỹ (t) (25)(
˙̃Y (t)
˙̃Z(t)

)
=

(
Ā0 0
Ia Ā

)(
Ỹ (t)

Z̃(t)

)
−
(
Ψ0

0

)
β̃(0, t) (26)

where Ia = Ψ3ϕ̄(0)−Bγ̄(1)− L(ϕ̄(1)− qγ̄(1)), and where
the in-domain couplings of the transport PDEs are removed and
the system matrix in (26) is Hurwitz because the matrices Ā
and Ā0 are Hurwitz defined in (8) and (10). The target observer
error system (22)–(26) has an analogous structure with (57), (59)
in [16]. The observer gains Ψ0,Ψ1(x),Ψ2(x),Ψ3 are obtained
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as

Ψ1(x) = −q2φ̄1(x, 0)− γ̄(x)L0 (27)

Ψ2(x) = −q2ψ̄1(x, 0)− φ̄(x)L0 (28)

Ψ0 = L0, Ψ3 = K̄2(0)q2. (29)

Lemma 1: Consider the observer (12)–(17) with the ob-
server gains (27)–(29) applied to the system (1)–(6). The
resulting observer error system-(z̃(x, t), w̃(x, t), X̃(t), Ỹ (t)),
for all initial data (z̃(x, 0), w̃(x, 0), X̃(0), Ỹ (0)) ∈ L2(0, 1)×
L2(0, 1)× Rn × Rn̄, is exponentially stable in the sense that
there exist positive constants Υe, λe such that∣∣∣X̃(t)

∣∣∣2 + ∣∣∣Ỹ (t)
∣∣∣2 + ‖z̃(·, t)‖2 + ‖w̃(·, t)‖2

≤ Υe

(∣∣∣X̃(0)
∣∣∣2 + ∣∣∣Ỹ (0)

∣∣∣2 + ‖z̃(·, 0)‖2 + ‖w̃(·, 0)‖2
)
e−λet

(30)

where the decay rate λe depends on the choices of L,L0 in (8)
and (10).

Proof: Through a traditional Lyapunov analysis for the target
observer error system (22)–(26), the exponential stability is ob-
tained, whose exponential convergence rate is determined by the
eigenvalue assignment for Ā = A− LC and Ā0 = A0 − L0C0,
i.e., the choices of L,L0. Applying the invertibility of the
backstepping transformations (19), (20), and (21), this lemma is
obtained. �

IV. CONTINUOUS-IN-TIME CONTROL LAW

Before designing the event-triggered controller Ud(t), a
continuous-in-time feedback controller U(t) is developed to
exponentially stabilize the sandwich plant in this section. The
proximal reflection term is compensated by the control input
going through the ODE at the input channel. As a result the
continuous-in-time control law includes nr-order time deriva-
tives of w(0, t) where nr is the relative degree of the ODE.
This high-order term would cause difficulties in designing the
subsequent event-triggering mechanism guaranteeing the exis-
tence of a minimal dwell-time between two triggering times. A
low-pass-filter-based modification of the backstepping control
design is presented to address this problem.

The continuous-in-time control is derived by conducting a
state-feedback design based on the observer (12)–(17) with
output estimation error injection terms assumed absent, in ac-
cordance to the result on their asymptotic convergence to zero
in Lemma 1 (complete (12)–(17) is only used in the simulation).
The separation principle is then verified and applied in the
stability analysis of the resulting closed-loop system.

A. First Transformation

In order to remove the in-domain couplings between the PDEs
and make the system matrix of the ODE at the right boundary
Hurwitz, we introduce a PDE backstepping transformation

α(x, t) = ẑ(x, t)−
∫ 1

x

M(x, y)ẑ(y, t)dy

−
∫ 1

x

N(x, y)ŵ(y, t)dy − γ(x)X̂(t) (31)

β(x, t) = ŵ(x, t)−
∫ 1

x

H(x, y)ẑ(y, t)dy

−
∫ 1

x

J(x, y)ŵ(y, t)dy − λ(x)X̂(t) (32)

with M(x, y), N(x, y), γ(x), H(x, y), J(x, y), λ(x) satisfying
conditions (B.1)–(B.12) in the Appendix, whose well-posedness
is proved in [43, Lemma 1]. With this transformation, the system
(12)–(17) with the observer errors assumed absent, is converted
to

˙̂
Y (t) = A0Ŷ (t) + E0

(
β(0, t)−

∫ 1

0

K̄4(0, y)α(y, t)dy

−
∫ 1

0

K̄5(0, y)β(y, t)dy − K̄6X̂(t)

)
+B0U(t)

(33)

α(0, t) = pβ(0, t) +

∫ 1

0

K̄1(x)α(x, t)dx+ C0Ŷ (t)

+

∫ 1

0

K̄2(x)β(x, t)dx+ K̄3X̂(t) (34)

αt(x, t) = − q1αx(x, t)− c1α(x, t) (35)

βt(x, t) = q2βx(x, t)− c2β(x, t) (36)

β(1, t) = qα(1, t) (37)

˙̂
X(t) = ÂX̂(t) +Bα(1, t) (38)

where Â = A−BK is Hurwitz in light of Assumption 1, and
the gains K̄1(x), K̄2(x), K̄3, K̄4(x), K̄5(x), K̄6 are shown in
(C.1)–(C.6) in the Appendix.

B. Second Transformation

Similar to [49], a transformation is used to remove the addi-
tional terms introduced by the transformation (31), (32) at the
left boundary, so that they can be compensated by the design of
the control input. This transformation is given by

Ẑ(t) = Ŷ (t) + C0
+

∫ 1

0

K̄1(x)α(x, t)dx

+ C0
+

∫ 1

0

K̄2(x)β(x, t)dx+ C0
+K̄3X̂(t) (39)

whereC0
+ is a right inverse matrix ofC0. BecauseC0 is full-row

rank according to Assumption 2, a right inverse exists for C0.
Then, (33), (34) are converted to
˙̂
Z(t) = Â0Ẑ(t) + q1C0

+K̄1(0)C0Ẑ(t) +B0Ū(t)

+MXX̂(t) +

∫ 1

0

Mα(x)α(x, t)dx

+

∫ 1

0

Mβ(x)β(x, t)dx+N1α(1, t) +N2β(0, t)

(40)

α(0, t) = pβ(0, t) + C0Ẑ(t) (41)

where

Ū(t) = U(t)−K0Ẑ(t) (42)
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and K0 is chosen to make Â0 Hurwitz according to Assump-
tion 1. The scalars N1, N2,Mα,Mβ ,MX are shown in (D.1)–
(D.5) in the Appendix.

C. Third Transformation With Frequency Domain Design

Taking the Laplace transformation of (35)–(38), (40), (41),
we have

(sI − Â0)Ẑ(s) = q1C0
+K̄1(0)C0Ẑ(s) +MXX̂(s)

+

∫ 1

0

Mα(x)α(x, s)dx+

∫ 1

0

Mβ(x)β(x, s)dx

+N1α(1, s) +N2β(0, s) +B0Ū(s) (43)

α(0, s) = pβ(0, s) + C0Ẑ(s) (44)

sα(x, s) = −q1αx(x, s)− c1α(x, s) (45)

sβ(x, s) = q2βx(x, s)− c2β(x, s) (46)

β(1, s) = qα(1, s) (47)

(sI − Â)X̂(s) = Bα(1, s). (48)

For brevity, we consider all the initial conditions to be zero while
taking the Laplace transform (arbitrary initial conditions could
be incorporated into the stability statement through a routine
expanded analysis).

Recalling that Â0 is Hurwitz, det(sI − Â0) does not have
any zeros in the closed right-half plane. Multiplying both sides
of (43) with (sI − Â0)

−1, we get

Ẑ(s) = (sI − Â0)
−1

[
q1C0

+K̄1(0)C0Ẑ(s) +MXX̂(s)

+

∫ 1

0

Mα(x)α(x, s)dx+

∫ 1

0

Mβ(x)β(x, s)dx

+N1α(1, s) +N2β(0, s) +B0Ū(s)

]
. (49)

In order to cancel the proximal reflection term β(0, s) in (44),
the following transformation:

Ŵ (s) = C0
+pβ(0, s) + Ẑ(s) (50)

is applied to (49) and (44), yielding

Ŵ (s) = (sI − Â0)
−1

[
q1C0

+K̄1(0)C0Ŵ (s) +MXX̂(s)

+

∫ 1

0

Mα(x)α(x, s)dx+

∫ 1

0

Mβ(x)β(x, s)dx

+N1α(1, s) + N̄2β(0, s)

]
+ (sI − Â0)

−1B0Ū(s)

+ C0
+pβ(0, s) (51)

α(0, s) = C0Ŵ (s) (52)

where N̄2 = N2 − q1C0
+K̄1(0)p. Together with (45)–(48), we

have the following relationships:

α(x, s) = e

(
c1−s
q1

)
x
C0Ŵ (s) (53)

β(x, s) = qe(
c2−s
q2

)(1−x)+(
c1−s
q1

)C0Ŵ (s) (54)

α(0, s) = C0Ŵ (s) (55)

β(1, s) = qe

(
c1−s
q1

)
C0Ŵ (s) (56)

β(0, s) = qe

(
c2−s
q2

)
+
(

c1−s
q1

)
C0Ŵ (s) (57)

α(1, s) = e

(
c1−s
q1

)
C0Ŵ (s) (58)

X̂(s) = (sI − Â)−1Be

(
c1−s
q1

)
C0Ŵ (s) (59)∫ 1

0

Mβ(y)β(y, s)dy

=

∫ 1

0

Mβ(y)qe

(
c2−s
q2

)
(1−y)+

(
c1−s
q1

)
dyC0Ŵ (s) (60)

∫ 1

0

Mα(y)α(y, s)dy =

∫ 1

0

Mα(y)e

(
c1−s
q1

)
y
dyC0Ŵ (s).

(61)

Inserting (53)–(61) into (51), and multiplying by C0 on both
sides, we have

C0Ŵ (s) = C0(sI − Â0)
−1

[
q1C0

+K̄1(0)C0Ŵ (s)

+MX(sI − Â)−1Be

(
c1−s
q1

)
C0Ŵ (s)

+

∫ 1

0

Mα(y)e

(
c1−s
q1

)
y
dyC0Ŵ (s)

+

∫ 1

0

Mβ(y)qe

(
c2−s
q2

)
(1−y)+

(
c1−s
q1

)
dyC0Ŵ (s)

+N1e

(
c1−s
q1

)
C0Ŵ (s) + N̄2qe

(
c2−s
q2

)
+
(

c1−s
q1

)
C0Ŵ (s)

]

+ C0(sI − Â0)
−1B0Ū(s) + pqe

(
c2−s
q2

)
+
(

c1−s
q1

)
C0Ŵ (s).

(62)

We use the definition of a (strictly) proper transfer function for
infinite-dimensional systems from [10].

Definition 1: A transfer functionG is said to be proper if for,
sufficiently large h, supRe(s)≥0

⋂ |s|>h |G(s)| <∞. If the limit
ofG(s) at infinity exists and is 0, we say thatG is strictly proper.

According to [10], the definition of an asymptotically stable
transfer function for infinite-dimensional systems is given next.

Definition 2: A transfer function G(s) is said to be asymp-
totically stable if it satisfies supRe(s)≥0 |G(s)| <∞.

Definition 2 indicates there is no pole in the closed right-half
plane. For the sake of brevity of exposition, when we refer to a
transfer function as stable, we mean asymptotically stable.

Define a new variable as

ξ(s) = C0Ŵ (s). (63)

Equation (62) is, thus, rewritten as

ξ(s) =

[
C0(sI − Â0)

−1G(s) + pqe

(
c2−s
q2

+
c1−s
q1

)]
ξ(s)

+ C0(sI − Â0)
−1B0Ū(s) (64)

where

G(s) = q1C0
+K̄1(0) +MX(sI − Â)−1Be

(
c1−s
q1

)
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+

∫ 1

0

Mα(y)e

(
c1−s
q1

)
y
dy

+

∫ 1

0

Mβ(y)qe

(
c2−s
q2

)
(1−y)+

(
c1−s
q1

)
dy

+N1e

(
c1−s
q1

)
+ N̄2qe

(
c2−s
q2

+
c1−s
q1

)
(65)

is a vector of stable, proper transfer functions because there
is no pole in the closed right half-plane (since Â is Hurwitz).
The definitions of proper, stable properties of irrational transfer
functions are given in Definitions 1 and 2.

Using Assumption 2, according to [34], we get

C0(sI − Â0)
−1B0 �= 0.

We now choose Ū(s) in (64) as

Ū(s) = − F (s)ξ(s) (66)

where

F (s) =
Ω(s)

C0(sI − Â0)−1B0

[
C0(sI − Â0)

−1G(s)

+ pqe

(
c2−s
q2

)
+
(

c1−s
q1

)]
. (67)

The transfer function Ω(s) is a stable SISO low-pass filter of
sufficient order to be designed, which makes F (s) (strictly)
proper and satisfies

|Φ(s)| < 1 (68)

for all s ∈ C,�(s) ≥ 0, where

Φ(s) = (1−Ω(s))

(
C0(sI−Â0)

−1G(s)+pqe

(
c2−s
q2

)
+
(

c1−s
q1

))
.

(69)

The matrix Â0 being Hurwitz and G(s) in (65) being a stable,
proper transfer matrix, along with Assumption 3, ensures the
existence of the low-pass filter Ω(s) satisfying (68) when s
approaches infinity along the imaginary axis, so a low-pass filter
Ω(s) exists with the desired properties for all s ∈ C,�(s) ≥ 0.
The transfer function F (s) (67) is stable and proper because
there is no pole in the closed right half-plane.

According to (32), (57), (63), (66), and (67), the control design
contains the signal β(0,s)

C0(sI−Â0)−1B0
, which is associated with nr-

order time derivatives of ŵ(0, t) (the initial condition is, thus,
set in χ defined below (1)–(6)) and enters into the low-pass filter
Ω(s).

Inserting Ū(s) defined by (66), then (64) becomes

(1− Φ(s))ξ(s) = 0 (70)

where Φ(s) is given in (69) and satisfies (68).
In the continuous-in-time control design in this section, (68)

and (70) ensure the exponential convergence to zero of ξ. The
exponential convergence to zero of Ŵ is obtained by recalling
(51), with (53)–(61), (63), and (66) incorporated (the resulting
transfer functions before ξ(s) on the right-hand side of the
resulting equation, whose left-hand side is Ŵ (s), are proper
and stable). The exponential convergence to zero of the signals
in the α, β PDEs and the distal X̂ ODE are also obtained by
recalling the relationships (53)–(61).

Recalling (42), (66), the continuous-in-time control law, in s
domain, is obtained as

U(s) = K0Ẑ(s) + Ū(s) = K0Ẑ(s)− F (s)ξ(s) (71)

based on which the event-triggering mechanism is designed in
the following section.

V. EVENT-TRIGGERING MECHANISM

In this section, we introduce an event-triggered control
scheme for stabilization of the 2× 2 hyperbolic PDE sand-
wiched system (1)–(6). This scheme relies on both the
continuous-in-time control U(t), designed in the last section,
and a dynamic event-triggering mechanism (ETM), which deter-
mines triggering times. The event-triggered control signalUd(t)
is the value of the continuous-in-time U(t) at the time instants
tk but applied until time tk+1, i.e.,

Ud(t) = U(tk), t ∈ [tk, tk+1). (72)

A deviation d(t) between the continuous-in-time control sig-
nal and the event-based one is given as

d(t) = U(t)− Ud(t). (73)

Recalling (71), we know that

Ud(s) = U(s)− d(s) = K0Ẑ(s)− F (s)ξ(s)− d(s). (74)

ReplacingU(s) byUd(s) in the control design in the last section,
applying (74), the relation (70) becomes

(1− Φ(s))ξ(s) = C0(sI − Â0)
−1B0d(s). (75)

Multiplying both sides of (51) (where Ū(s) = −F (s)ξ(s)−
d(s) now) with (sI − Â0), and inserting (53)–(61), (66), (75),
yields

sŴ (s) = Â0Ŵ (s) +D(s)d(s) (76)

where

D(s) =

(
G(s)−B0F (s) + (sI − Â0)C

+
0 pqe

(
c2−s
q2

)
+
(

c1−s
q1

))

× C0(sI − Â0)
−1B0

1− Φ(s)
−B0 (77)

is an n̄-dimensional column vector of stable, proper transfer
functions. The components ofD(s) are stable, i.e., they have no
right half-plane poles, due to (65), (67), Â0 being Hurwitz, and
1− Φ(s) �= 0 for all s ∈ C,�(s) ≥ 0. Let us denote

D(d(t))n̄×1 = L−1(D(s)d(s))

which is the inverse Laplace transformation of D(s)d(s), i.e.,
of the outputs of the systemD(s) under the input d(s). The sta-
ble, proper D(s) guarantees a Bounded-Input Bounded-Output
(BIBO) relationship, so that the following estimate holds:

D(d(t))2 ≤ d̄ sup
0≤ζ≤t

d(ζ)2 (78)

where the constant d̄ > 0 is associated with the L1 norm of the
impulse responses ([13, CH.2], [29, Appendix B]) of the entries
of D(s) in (77). It follows that d̄ only depends on the param-
eters of the plant and of the low-pass-filter-based backstepping
continuous-in-time control law.

Recalling (35)–(38), (52), and (76), the event-based target
system in the time domain is obtained as

˙̂
W (t) = Â0Ŵ (t) + D(d(t)) (79)
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α(0, t) = C0Ŵ (t) (80)

αt(x, t) = −q1αx(x, t)− c1α(x, t) (81)

βt(x, t) = q2βx(x, t)− c2β(x, t) (82)

β(1, t) = qα(1, t) (83)

˙̂
X(t) = ÂX̂(t) +Bα(1, t). (84)

The ETM to determine the triggering times is designed to be
governed by the following dynamic triggering condition [20]:

tk+1 = inf{t ∈ R+|t > tk|d(t)2 ≥ θŴT (t)P0Ŵ (t)− μm(t)}
(85)

where the internal dynamic variable m(t) satisfies the ordinary
differential equation

ṁ(t) =−ηm(t)− μW sup
0≤ζ≤t

∣∣∣Ŵ (ζ)
∣∣∣2 − μd sup

0≤ζ≤t
d(ζ)2 (86)

with initial condition m(0) < 0, which guarantees that

m(t) < 0. (87)

Inequality (87) follows from the ODE (86), the nonpositivity
of the nonhomogeneous terms on its right-hand side, the strict
negativity of m(0), the variation-of-constants formula, and the
comparison principle. Thus, the fact that m(t) < 0 would not
be affected by (85).

The positive definite matrix P0 = PT
0 in (85) is the unique

solution to the Lyapunov equation

ÂT
0 P0 + P0Â0 = −Q0 (88)

for some Q0 = Q0
T > 0. The positive constants θ, μ, η, μW ,

μd in ETM are to be determined later.
The observer-based event-triggering condition (85) uses the

transformed ODE state Ŵ (t) because it contains the estimated
states of the overall ODE-PDE-ODE system through the trans-
formations (31), (32), (39), (50).

As will be seen in Lemma 2, ḋ(t)2, on which the min-
imal dwell-time relies, is bounded by sup0≤ζ≤t |Ŵ (ζ)|2,

sup0≤ζ≤t d(ζ)
2 (instead of |Ŵ (t)|2, d(t)2 in (85)), in or-

der to avoid the Zeno phenomenon, namely, to ensure that
limk→+∞ tk = +∞, the internal dynamic variablem(t) is intro-
duced in (85) to offset sup0≤ζ≤t |Ŵ (ζ)|2, sup0≤ζ≤t d(ζ)

2 when
proving the existence of a minimal dwell-time, which will be
seen clearly in the proof of Lemma 3.

Proposition 1: For given (z(·, tk), w(·, tk))T ∈
L2((0, 1); R2), X(tk) ∈ Rn, Y (tk) ∈ Rn̄ and
(ẑ(·, tk), ŵ(·, tk))T ∈ L2((0, 1); R2), X̂(tk) ∈ Rn,
Ŷ (tk) ∈ Rn̄, m(tk) ∈ R−, there exist unique (weak)
solutions ((z, w)T , X, Y ) ∈ C0([tk, tk+1]; L

2(0, 1); R2)×
C0([tk, tk+1]; Rn) × C0([tk, tk+1]; Rn̄) and ((ẑ, ŵ)T ,

X̂, Ŷ ) ∈ C0([tk, tk+1]; L
2(0, 1); R2)× C0([tk, tk+1]; Rn)×

C0([tk, tk+1];Rn̄), m ∈ C0([tk, tk+1];R−) to the systems
(1)–(6) and (12)–(17), (86) with the event-based control input
Ud(t) applied in (1) and (12), respectively, between two time
instants tk and tk+1.

Proof: For given (z̃(·, tk), w̃(·, tk))T ∈ L2((0, 1);R2),
X̃(tk) ∈ Rn and Ỹ (tk) ∈ Rn̄, it can be shown that there exists
a unique solution ((z̃, w̃)T , X̃, Ỹ ) ∈ C0([tk, tk+1];L

2(0, 1);
R2) × C0([tk, tk+1]; Rn) × C0([tk, tk+1]; Rn̄) of the

observer error system by recalling the target observer error
system (22)–(26), which is well-known to be well-posed
for a given initial data, as well as the backstepping
transformations (19), (20), and (21). Adopting the notion
of the weak solution given in the book [7] (Definition
A.5), for given (z(·, tk), w(·, tk))T ∈ L2((0, 1);R2),
X(tk) ∈ Rn and Y (tk) ∈ Rn̄, with the results in [12],
[38], it can be shown that there exists a unique (weak)
solution ((z, w)T , X, Y ) ∈ C0([tk, tk+1];L

2(0, 1);R2)×
C0([tk, tk+1];Rn)× C0([tk, tk+1];Rn̄) to the system (1)–(6)
under the event-based control input Ud(t). Recalling (18),
it can then be shown that there exists a unique (weak)
solution ((ẑ, ŵ)T , X̂, Ŷ ) ∈ C0([tk, tk+1];L

2(0, 1);R2)×
C0([tk, tk+1];Rn)× C0([tk, tk+1];Rn̄) and m ∈
C0([tk, tk+1];R−) to the system (12)–(17), (86) under the
event-based control input Ud(t). Proposition 1 is, thus,
obtained. �

Lemma 2: Considering d(t) defined in (73), there exist posi-
tive constants λW , λd such that

ḋ(t)2 ≤ λW sup
0≤ζ≤t

∣∣∣Ŵ (ζ)
∣∣∣2 + λd sup

0≤ζ≤t
d(ζ)2 (89)

for t ∈ (tk, tk+1), where λW , λd only depend on parameters of
the plant and the low-pass-filter-based backstepping continuous-
in-time control law.

Proof: Taking the time derivative of (73), we have

ḋ(t)2 = U̇(t)2 (90)

because of U̇d(t) = 0 for t ∈ (tk, tk+1). Recalling (50), (57),
(71), (76), we get

sU(s) = R(s)Ŵ (s) +Rd(s)d(s) (91)

where

R(s) =

(
K0 −

(
K0C

+
0 pqe

(
c2−s
q2

)
+
(

c1−s
q1

)
+ F (s)

)
C0

)
Â0

(92)

is an n̄-dimensional row vector of stable, proper transfer func-
tions, and

Rd(s) =

(
K0−

(
K0C

+
0 pqe

(
c2−s
q2

)
+
(

c1−s
q1

)
+ F (s)

)
C0

)
D(s)

(93)

is a stable, proper transfer function (F (s) and D(s) are stable
and proper). We, thus, have BIBO with the estimate

U̇(t)2 ≤ λW sup
0≤ζ≤t

∣∣∣Ŵ (ζ)
∣∣∣2 + λd sup

0≤ζ≤t
d(ζ)2 (94)

where λW is associated with the ‖ · ‖1 norm of the impulse
responses of the entries of the transfer function vectorR(s), and
λd is, likewise, associated with ‖Rd‖1, which only depend on
the plant and the design of the continuous-in-time control law.�

The following lemma proves the existence of a minimal
dwell-time between two triggering times (independent of initial
conditions). It ensures that the Zeno phenomenon does not occur
and the achievement of a reduction of changes in the value in the
actuator signal compared with the continuous-in-time control.

Lemma 3: For some μW , μd, θ, there exists a minimal dwell-
time τ > 0, independent of initial conditions, between any two
successive triggering times, i.e., tk+1 − tk ≥ τ for all k ≥ 0.
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Proof: Let us introduce the function

ψ(t) =
d(t)2 + μ

2m(t)

θŴT (t)P0Ŵ (t)− μ
2m(t)

(95)

which was proposed in [20]. We have that ψ(tk+1) = 1 because
the event is triggered, and ψ(tk) < 0 because of m(t) < 0 and
d(tk) = 0. The function ψ(t) is continuous on [tk, tk+1] due to
Proposition 1. By the intermediate value theorem, there exists
t∗ > tk such thatψ(t) ∈ [0, 1] when t ∈ [t∗, tk+1]. The minimal
τ can be defined as the minimal time it takes for ψ(t) from 0
to 1, i.e., the reciprocal of the absolute value of the maximum
ψ̇(t).

Recalling (78), (79), we have that

ŴT (t)P0Ŵ (t)

dt
≥ −3

2
λmax(Q0)

∣∣∣Ŵ (t)
∣∣∣2

− 2d̄λmax(P0)
2

λmax(Q0)
sup
0≤ζ≤t

d(ζ)2. (96)

Taking the derivative of ψ(t) (95) and using (89), (96), we have

ψ̇(t) =
2d(t)ḋ(t)+ μ

2 ṁ(t)

θŴT (t)P0Ŵ (t)− μ
2m(t)

− θ ŴT (t)P0Ŵ (t)
dt − μ

2 ṁ(t)

θŴT (t)P0Ŵ (t)− μ
2m(t)

ψ(t)

≤ 1

θŴT (t)P0Ŵ (t)− μ
2m(t)

×
[
r1λW sup

0≤ζ≤t

∣∣∣Ŵ (ζ)
∣∣∣2

+ r1λd sup
0≤ζ≤t

d(ζ)2 +
1

r1
d(t)2 +

μ

2
ṁ(t)

]

− 1

θŴT (t)P0Ŵ (t)− μ
2m(t)

×
[
θ

(
− 3

2
λmax(Q0)

∣∣∣Ŵ (t)
∣∣∣2

− 2d̄λmax(P0)
2

λmax(Q0)
sup
0≤ζ≤t

d(ζ)2
)
− μ

2
ṁ(t)

]
ψ(t) (97)

where r1 is a positive constant from Young’s inequality. Inserting
(86), one obtains

ψ̇(t) ≤ 1

θŴT (t)P0Ŵ (t)− μ
2m(t)

[
r1λW sup

0≤ζ≤t

∣∣∣Ŵ (ζ)
∣∣∣2

+ r1λd sup
0≤ζ≤t

d(ζ)2 +
1

r1
d(t)2 − μ

2
ηm(t)

− μ

2
μW sup

0≤ζ≤t

∣∣∣Ŵ (ζ)
∣∣∣2 − μ

2
μd sup

0≤ζ≤t
d(ζ)2

]

− 1

θŴT (t)P0Ŵ (t)− μ
2m(t)

×
[
− 3θ

2
λmax(Q0)

∣∣∣Ŵ (t)
∣∣∣2

− 2θd̄λmax(P0)
2

λmax(Q0)
sup
0≤ζ≤t

d(ζ)2 +
μ

2
ηm(t)

+
μ

2
μW sup

0≤ζ≤t

∣∣∣Ŵ (ζ)
∣∣∣2 + μ

2
μd sup

0≤ζ≤t
d(ζ)2

]
ψ(t)

≤ 1

θŴT (t)P0Ŵ (t)− μ
2m(t)

×
[(
r1λW − μ

2
μW

)
sup
0≤ζ≤t

∣∣∣Ŵ (ζ)
∣∣∣2

+
(
r1λd − μ

2
μd

)
sup
0≤ζ≤t

d(ζ)2 +
1

r1
d(t)2 − μ

2
ηm(t)

]

+
1

θŴT (t)P0Ŵ (t)− μ
2m(t)

[
− μ

2
ηm(t)

+

(
3θ

2
λmax(Q0)− μ

2
μW

)
sup
0≤ζ≤t

∣∣∣Ŵ (ζ)
∣∣∣2

+

(
2θd̄λmax(P0)

2

λmax(Q0)
− μ

2
μd

)
sup
0≤ζ≤t

d(ζ)2
]
ψ(t).

(98)

Choosing positive constants μW , μd, θ in ETM such that they
satisfy

μW ≥ 2r1λW

μ
(99)

μd ≥ 2r1λd

μ
(100)

θ ≤ min

{
μμW

3λmax(Q0)
,
μdμλmax(Q0)

4d̄λmax(P0)2

}
(101)

we get

ψ̇(t) ≤
1
r1
d(t)2 − μ

2 ηm(t)

θŴT (t)P0Ŵ (t)− μ
2m(t)

+
−μ

2 ηm(t)

θŴT (t)P0Ŵ (t)− μ
2m(t)

ψ(t). (102)

Applying the following inequalities:

−μ
2 ηm(t)

θŴT (t)P0Ŵ (t)− μ
2m(t)

≤ −μ
2 ηm(t)

−μ
2m(t)

= η

d(t)2

θŴT (t)P0Ŵ (t)− μ
2m(t)

=
d(t)2 + μ

2m(t)− μ
2m(t)

θŴT (t)P0Ŵ (t)− μ
2m(t)

≤ ψ(t) + 1

which hold because of m(t) < 0, then the inequality (102)
becomes

ψ̇(t) ≤ 1

r1
+ η +

(
1

r1
+ η

)
ψ(t). (103)

It follows that the time needed by ψ(t) to go from 0 to 1 is at
least:

τ =

∫ 1

0

1

( 1
r1

+ η)s̄+ 1
r1

+ η
ds̄ > 0 (104)

which is independent of initial conditions, where η is a free
design parameter appearing in (86) and the condition on the
positive constant r1 from Young’s inequality will be determined
later. �
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Fig. 2. Event-based output-feedback closed-loop system.

VI. STABILITY ANALYSIS OF THE EVENT-BASED

CLOSED-LOOP SYSTEM

The event-based output-feedback closed-loop system is built
as Fig. 2, where a low-pass-filter-based backstepping control
law U(t) in (71), using the states from the observer, is updated
at time instants tk determined by ETM (85), (86) realized based
on the observer, to regulate the PDE plant (1)–(6).

Lemma 4: With arbitrary initial data (Ŷ (0), ẑ(x, 0), ŵ(x, 0),

X̂(0)) ∈ χ, in the event-based state-feedback loop, the exponen-
tial convergence is achieved in the sense that there exist positive
constants Υf , λf such that

Ξ̂(t) ≤ Υf Ξ̂(0)e
−λf t (105)

where

Ξ̂(t) =
∣∣∣X̂(t)

∣∣∣2 + ∣∣∣Ŷ (t)
∣∣∣2 + ‖ẑ(·, t)‖2 + ‖ŵ(·, t)‖2

+ |m(t)|+ Ū(t)2. (106)

Proof: The state of the low-pass filter is Ū(t) in (66). Ac-
cording to (63), we have Ū(s) = −F (s)C0Ŵ (s) where F (s)
(67) is a stable, proper transfer function guaranteeing the BIBO
property with the estimate as

Ū(t)2 ≤ λlp|C0|2 sup
0≤ζ≤t

∣∣∣Ŵ (ζ)
∣∣∣2 (107)

where the positive constant λlp is associated with the L1 norm
of the impulse response of F (s).

Let us consider the Lyapunov function

V (t) = rwX̂(t)TPX̂(t) + Ŵ (t)TP0Ŵ (t)

+
1

2
ra

∫ 1

0

eδ1xβ(x, t)2dx

+
1

2
rb

∫ 1

0

e−δ2xα(x, t)2dx−m(t) (108)

where a positive definite matrix P = PT is the solution to the
Lyapunov equation

ÂTP + PÂ = −Q (109)

for some Q = QT > 0. The positive constants ra, rb, δ1, δ2, rw
are to be determined later. The Lyapunov function (108) is
positive definite because of m(t) < 0.

Defining

Ω0(t) = ‖α(·, t)‖2 + ‖β(·, t)‖2 +
∣∣∣X̂(t)

∣∣∣2
+
∣∣∣Ŵ (t)

∣∣∣2 + |m(t)|. (110)

Recalling (108), (110), the following inequality holds:

μ1Ω0(t) ≤ V (t) ≤ μ2Ω0(t) (111)

for positive constants

μ1 = min

{
rwλmin(P ), λmin(P0),

1

2
ra,

1

2
rbe

−δ2 , 1

}
(112)

μ2 = max

{
rwλmax(P ), λmax(P0),

1

2
rae

δ1 ,
1

2
rb, 1

}
. (113)

Taking the derivative of (108) along (79)–(84), recalling (86),
one obtain

V̇ (t) = − rwX̂(t)TQX̂(t) + 2rwX̂
TPBα(1, t)

− Ŵ (t)TQ0Ŵ (t) + 2ŴTP0D(d(t))

+
1

2
q2rae

δ1β(1, t)2 − 1

2
q2raβ(0, t)

2

− 1

2
δ1q2ra

∫ 1

0

eδ1xβ(x, t)2dx

− 1

2
q1rbe

−δ2α(1, t)2 +
1

2
q1rb

∣∣∣C0Ŵ (t)
∣∣∣2

− 1

2
δ2q1rb

∫ 1

0

e−δ2xα(x, t)2dx

− rac2

∫ 1

0

eδ1xβ(x, t)2dx− rbc1

∫ 1

0

e−δ2xα(x, t)2dx

+ ηm(t) + μW sup
0≤ζ≤t

∣∣∣Ŵ (ζ)
∣∣∣2 + μd sup

0≤ζ≤t
d(ζ)2.

(114)

Applying Young’s inequality recalling (78), we obtain

V̇ (t) ≤ − rw
2

λmin(Q)
∣∣∣X̂(t)

∣∣∣2
−
(
1

2
λmin(Q0)− 1

2
q1rb|C0|2

) ∣∣∣Ŵ (t)
∣∣∣2

−
(
1

2
q1rbe

−δ2 − 2rw|PB|2
λmin(Q)

− 1

2
q2rae

δ1q2
)
α(1, t)2

− 1

2
q2raβ(0, t)

2 +
2d̄λmax(P0)

2

λmin(Q0)
sup
0≤ζ≤t

d(ζ)2

−
(
1

2
δ1q2ra − ra|c2|

)∫ 1

0

eδ1xβ(x, t)2dx

−
(
1

2
δ2q1rb − rb|c1|

)∫ 1

0

e−δ2xα(x, t)2dx

− η|m(t)|+ μW sup
0≤ζ≤t

∣∣∣Ŵ (ζ)
∣∣∣2 + μd sup

0≤ζ≤t
d(ζ)2.

Choosing δ1, δ2, ra, rb, rw as

δ1 >
2|c2|
q2

(115)

δ2 >
2|c1|
q1

(116)

rb <
λmin(Q0)

q1|C0|2 (117)
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rw <
q1rbe

−δ2λmin(Q)

8|PB|2 (118)

ra <
q1rb
2q2q2

e−(δ2+δ1) (119)

we, thus, arrive at

V̇ (t) ≤ − σaV (t) + μW sup
0≤ζ≤t

∣∣∣Ŵ (ζ)
∣∣∣2

+

(
μd +

2d̄λmax(P0)
2

λmin(Q0)

)
sup
0≤ζ≤t

d(ζ)2 (120)

where

σa =
1

μ2
min

{
rw
2

λmin(Q),
1

2
λmin(Q0)− 1

2
q1rb|C0|2,

1

2
δ1q2ra − ra|c2|,

(
1

2
δ2q1rb − rb|c1|

)
e−δ2 , η

}
> 0.

(121)

Multiplying both sides of (120) by eσat, we have

eσatV̇ (t) + eσatσaV (t)

≤ eσatμW sup
0≤ζ≤t

∣∣∣Ŵ (ζ)
∣∣∣2

+ eσat

(
μd +

2d̄λmax(P0)
2

λmin(Q0)

)
sup
0≤ζ≤t

d(ζ)2. (122)

The left-hand side of (122) is d(eσatV (t))
dt . Integration of (122)

from 0 to t yields

V (t) ≤ V (0)e−σat +
1

σa
(1− e−σat)

[
μW sup

0≤ζ≤t

∣∣∣Ŵ (ζ)
∣∣∣2

+

(
μd +

2d̄λmax(P0)
2

λmin(Q0)

)
sup
0≤ζ≤t

d(ζ)2
]

≤ V (0)e−σat +
1

σa

[
μW sup

0≤ζ≤t

∣∣∣Ŵ (ζ)
∣∣∣2

+

(
μd +

2d̄λmax(P0)
2

λmin(Q0)

)
sup
0≤ζ≤t

d(ζ)2
]
. (123)

The triggering condition (85) guarantees

sup
0≤ζ≤t

d(ζ)2 ≤ θλmax(P0) sup
0≤ζ≤t

∣∣∣Ŵ (ζ)
∣∣∣2 + μ sup

0≤ζ≤t
|m(ζ)|.

(124)

Inserting (124) into (123), and then recalling (110), (111), yields

V (t) ≤ V (0)e−σat +
1

σa

[
μW sup

0≤ζ≤t

∣∣∣Ŵ (ζ)
∣∣∣2

+

(
μd +

2d̄λmax(P0)
2

λmin(Q0)

)

× sup
0≤ζ≤t

(
θλmax(P0)

∣∣∣Ŵ (ζ)
∣∣∣2 + μ|m(ζ)|

)]

≤ V (0)e−σat

+
1

σa

[
μW +

(
μd +

2d̄λmax(P0)
2

λmin(Q0)

)
θλmax(P0)

]

× sup
0≤ζ≤t

∣∣∣Ŵ (ζ)
∣∣∣2

+
1

σa

(
μd +

2d̄λmax(P0)
2

λmin(Q0)

)
μ sup

0≤ζ≤t
|m(ζ)|

≤ V (0)e−σat

+max

{
1

σa

[
μW

+

(
μd +

2d̄λmax(P0)
2

λmin(Q0)

)
θλmax(P0)

]
,

1

σa

(
μd +

2d̄λmax(P0)
2

λmin(Q0)

)
μ

}
sup
0≤ζ≤t

Ω0(ζ)

≤ V (0)e−σat + Φ̄ sup
0≤ζ≤t

V (ζ) (125)

where

Φ̄ =
1

μ1
max

{
1

σa
μW +

1

σa

(
μd +

2d̄λmax(P0)
2

λmin(Q0)

)
θλmax(P0),

μdμ

σa
+

2μd̄λmax(P0)
2

σaλmin(Q0)

}
. (126)

In order to ensure that

Φ̄ < 1 (127)

with combining the conditions (99)–(101) used in avoiding
the Zeno phenomenon, the design parameters μ, μd, μW , θ are
chosen according to the following guidelines.

1) Choose μ as

μ <
μ1σaλmin(Q0)

4d̄λmax(P0)2
(128)

to ensure that 2μd̄λmax(P0)
2

σaλmin(Q0)
< μ1

2 in (126). Before showing the
guidelines for the other design parameters, we define the analysis
parameter r1, which is from Young’s inequality applied in (97),
as

r1 < min

{
μ1σa
4λd

,
μμ1σa
4λW

}
. (129)

The choice of r1 comes from the need to guarantee that both
(127) and (99), (100) hold, which will be seen clearly later.

2) Choose μd to satisfy
2r1λd

μ
≤ μd <

μ1σa
2μ

(130)

in order to ensure that μdμ
σa

< μ1

2 in (126) (with the right inequal-
ity of (130)). Recalling (128), the final term in (126) is less than
μ1. The condition (100) is incorporated as the left inequality of
(130).

3) Choose μW to satisfy
2r1λW

μ
≤ μW <

μ1σa
2

(131)

in order to ensure that 1
σa
μW < μ1

2 in (126) (with the right
inequality of (131)), where the condition (99) is incorporated
as the left inequality of (131).

The parameter r1 (129) is chosen to ensure that the far left
terms of (130), (131) are less than the far right ones, where the far
right terms are from ensuring (127) and the far left terms are from
the conditions (99), (100) on avoiding the Zeno phenomenon.
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Fig. 3. Sequence of determining all parameters required in control design and the relations to the estimates of overshoot, the decay rate of
exponential convergence and the minimal dwell-time.

4) Choose θ to satisfy

θ < min

{
σaμ1

2
(
μd +

2d̄λmax(P0)2

λmin(Q0)

)
λmax(P0)

,
μμW

3λmax(Q0)
,

μdμλmax(Q0)

4d̄λmax(P0)2

}
(132)

in order to ensure that 1
σa

(μd +
2d̄λmax(P0)

2

λmin(Q0)
)θλmax(P0) <

μ1

2

in (126). Recalling (131), the first term in (126) is, thus, less
than μ1. The condition (101) is incorporated into (132) as the
last two terms of (132). Because both terms in (126) are less than
μ1 ensured by the steps 1)–4), the inequality (127) is assured.

The following estimate then holds:

sup
0≤ζ≤t

(
V (ζ)eσaζ

) ≤ V (0) + Φ̄ sup
0≤ζ≤t

(
V (ζ)eσaζ

)
(133)

as a consequence of (125). It follows that

sup
0≤ζ≤t

V (ζ) ≤ ΥV V (0)e−σat (134)

where the constant

ΥV =
1

1− Φ̄
> 0 (135)

by recalling (127). The choice of the low-pass filter and ETM
parameters affect the overshoot coefficient in the exponential
result according to (126).

Since, according to Definitions 1 and 2, the transfer function
between β(0, s) and Ŵ (s) is stable and proper, (57) leads to

β(0, t)2 ≤ γβ sup
0≤ζ≤t

∣∣∣Ŵ (ζ)
∣∣∣2 (136)

where the positive constant γβ only depends on the plant param-
eters. Recalling (50), the following inequality holds:

Ẑ(t)2 = 2 sup
0≤ζ≤t

∣∣∣Ŵ (ζ)
∣∣∣2 + 2|C0

+|2p2 sup
0≤ζ≤t

β(0, ζ)2

≤ sup
0≤ζ≤t

γZ

∣∣∣Ŵ (ζ)
∣∣∣2 (137)

where the positive constant γZ = max{2, 2|C0
+|2p2γβ} only

depends on the plant parameters.
According to (107), (134), (137), we have∣∣∣X̂(t)

∣∣∣2 + ∣∣∣Ẑ(t)∣∣∣2 + ‖α(·, t)‖2 + ‖β(·, t)‖2

+ |m(t)|2 + Ū(t)

≤ Ῡf

( ∣∣∣X̂(0)
∣∣∣2 + ∣∣∣Ẑ(0)∣∣∣2 + ‖α(·, 0)‖2 + ‖β(·, 0)‖2

+ |m(0)|+ Ū(0)2
)
e−λ̄f t (138)

for some positive Ῡf , λ̄f , which are associated with ΥV (135)
and σa (121), respectively. Applying the invertibility of the
backstepping transformations (31), (32), and the transformation
(39), we arrive at (105), where Υf , λf are associated with ΥV

(135) and σa (121), respectively. �
The guidelines for the choices of all the parameters are given

by (7)–(10), (68), (69), (115)–(119), and (128)–(132), which are
cascaded rather than coupled. A sequence of determining these
parameters is shown in Fig. 3. The optimal choices of these
parameters are not studied in this article, but in the future work
the trade off between the convergence rate and the lower bound
of the minimal dwell-time is worth studying.

Theorem 1: For all initial data (Y (0), z(x, 0), w(x, 0),

X(0)) ∈ χ, (Ŷ (0), ẑ(x, 0), ŵ(x, 0), X̂(0)) ∈ χ, m(0) ∈ R−,
choosing the design parameters to satisfy (7)–(10), (68), (69),
(128), (130)–(132), the output-feedback closed-loop system,
i.e., the plant (1)–(6) under the event-based control input Ud(t),
in (72), which is realized using the observer (12)–(17), the
low-pass filter Ω(s) and the event-triggering mechanism (85),
(86), has the following properties.

1) There exist unique (weak) solutions ((z, w)T , X, Y ) ∈
C0(R+;L

2(0, 1);R2)× C0(R+;Rn)× C0(R+;Rn̄),
and ((ẑ, ŵ)T , X̂, Ŷ ) ∈ C0(R+;L

2(0, 1);R2)×
C0(R+;Rn)× C0(R+;Rn̄), m ∈ C0(R+;R

−) to
the system (1)–(6) and (12)–(17), (86), respectively,
under the event-based control input Ud(t).

2) There exists a positive constant τ such that

min
k≥0

{tk+1 − tk} ≥ τ. (139)

3) The exponential convergence in the closed-loop system
is achieved in the sense that there exist positive constants
Υa, λa such that

Ξ(t) + Ξ̂(t) ≤ Υa

(
Ξ(0) + Ξ̂(0)

)
e−λat (140)

where Ξ(t) = |X(t)|2 + |Y (t)|2 + ‖z(·, t)‖2 +
‖w(·, t)‖2 and Ξ̂(t) is defined in (106), which includes
|m(t)|.

4) The event-triggered control input is convergent to zero in
the sense of

lim
t→∞Ud(t) = 0. (141)

Proof:
1) By virtue of Proposition 1 and Lemma 3, through iter-

ative constructions between successive triggering times,
Property 1) is obtained.

2) Recalling Lemma 3, property 2) is obtained.
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3) Rewriting the observer states in the output-feedback con-
trol input as a sum of the plant states and the observer
errors according to (18), inserting the result into the plant
(1)–(6), through the same steps as in the above state-
feedback control designs, it follows that the closed-loop
dynamics are a cascade of the observer error dynamics
feeding into the target system dynamics in the form of
(79)–(84) (the state-feedback loop). Because the stability
of the observer error dynamics (which depends on the
choices of L,L0) and the stability of the state-feedback
loop dynamics (which depends on the choices of K,K0)
are independent, the separation principle holds. Equation
(140) is, thus, obtained recalling Lemma 1 and Lemma 4,
where the overshoot Υa is associated with Υe,Υf and
the decay rate σa is associated with λe, λf .

4) Recalling (71) and the stability result proved in property
3), we have the continuous-in-time control input U(t)
is convergent to zero. According to the definition (72),
property 4) is obtained. �

VII. APPLICATION IN MINING CABLE ELEVATOR

In this section, the proposed event-triggered backstepping
boundary control design is applied to axial vibration control of a
mining cable elevator that is 2000 m deep, and whose dynamics
include the hydraulic actuator, mining cable, and cage.

A. Model

The vibration model of the mining cable elevator is described
by a wave PDE [44], [46] sandwiched by two ODEs

Mhb̈0(t) = −chḃ0(t) + πR2
d

4
Eux(0, t) + Ud(t) (142)

u(0, t) = b0(t) (143)

ρutt(x, t) =
πR2

d

4
Euxx(x, t)− dcut(x, t), x ∈ [0, L̄] (144)

u(L̄, t) = bL(t) (145)

Mcb̈L(t) = −cLḃL(t) + πR2
d

4
Eux(L̄, t) (146)

where Ud(t) is the event-triggered backstepping control input
of the electronically controlled valves, which regulates the hy-
draulic actuator to suppress vibrations of the mining cable eleva-
tor according to Fig. 2. The PDE stateu(x, t) denotes distributed
axial vibration dynamics along the cable. The ODE state b0(t)
represents the displacement of the hydraulic actuator and bL(t) is
the vibration displacement of the cage. The physical parameters
in (142)–(146) of the mining cable elevator are shown in Table I.
We apply the Riemann transformations

z(x, t) = ut(x, t)−
√
Eπ

ρ

Rd

2
ux(x, t) (147)

w(x, t) = ut(x, t) +

√
Eπ

ρ

Rd

2
ux(x, t) (148)

TABLE I
PHYSICAL PARAMETERS OF THE MINING CABLE ELEVATOR

and define the new variablesY (t) = ḃ0(t),X(t) = ḃL(t), which
allows us to rewrite (142)–(146) as (1)–(6), with

q1 = q2 =

√
Eπ

ρ

Rd

2
, c1 = c2 =

−dc
2ρ

(149)

q = p = −1, C0 = C1 = 2 (150)

A0 =
−ch
Mh

− Rd

√
Eπρ

2Mh
, E0 =

Rd

√
Eπρ

2Mh
, B0 =

1

Mh

(151)

A =
−cL
Mc

+
Rd

√
Eπρ

2Mc
, B = −Rd

√
Eπρ

2Mc
. (152)

Assumptions 1–3 are satisfied with (149)–(152). Ini-
tial conditions of z(x, t) and w(x, t) are defined as
z(x, 0) = 0.01 sin(2π(L̄− x)/L̄+ π/6), w(x, 0) =
0.01 sin(3π(L̄− x)/L̄) and X(0) = 1

2 (w(L̄, 0)− qz(L̄, 0)),
Y (0) = 1

2 (z(0, 0)− pw(0, 0)), according to (5). The observer
initial conditions are defined as ẑ(x, 0) = z(x, 0) + 0.2,
ŵ(x, 0) = w(x, 0) + 0.2 where 0.2 is an initial observe
error, X̂(0) = 1

2 (ŵ(L̄, 0)− qẑ(L̄, 0)), Ŷ (0) = 1
2 (ẑ(0, 0)−

pŵ(0, 0)), according to (16). We pick the initial value of m(t)
as m(0) = −0.001. The simulation is conducted based on the
finite difference method with the time step of 0.0015 s and the
space step of 0.5 m.

B. Determination of Design Parameters

The free design parameter η in (86) is selected as η = 0.11.
The parameters affecting the decay rate of the states in the
closed-loop system are determined as follows. According to
A0, A,B0, B,C0, C in (150)–(152) and the parameter values in
Table I, recalling (7)–(10), the control gains and observer gains
are chosen as K0 = 1, K = 1.5 and L0 = 1, L = 2, respec-
tively, yielding Â0 = −106.7, Â = −1.067, Ā = −2.9, Ā0 =
−55.4. DefiningP = P0 = 1

2 , we then have λmin(Q0) = 106.7,
λmin(Q) = 1.067 via (88), (109). Considering (68), (69), and
C0(Is− Â0)

−1B0 = 2
300(s+106.7) in F (s) in (67), the low-pass

filter is chosen as the first-order type Ω(s) = 1
1+0.0011 s , which

can be implemented with an RC circuit. Next, choosing δ1 =
0.5, δ2 = 0.5 according to (115) and (116), and then determining
rb = 0.013, rw = 7.3, ra = 0.0023 from (117)–(119), leads
to μ2 = 3.65, μ1 = 0.0011 according to the formulate (112),
(113). Therefore, the estimate of the decay rate σa obtained
from (121) is 0.108.
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Fig. 4. Output-feedback event-based control input Ud(t).

The parameters of ETM are determined as follows. According
to the transfer functions (77), (92), (93), the plant parameters,
and the choices of K0, K, a group of conservative estimates
of d̄, λW , λd is d̄ = 5, λW = 250, λd = 600. Recalling (128),
(129), μ is defined as μ = 0.0024 and r1 as r1 = 0.22× 10−9.
Then, μW , μd are determined by (130) and (131) as μd = 0.01,
μW = 0.5× 10−4. Finally, pick θ = 0.36× 10−9 via (132).
Recalling (104) for the highly conservative minimal dwell-time
estimate τ , we get τ = 0.15× 10−9s. Substituting the above-
mentioned parameters into (126), we arrive at Φ̄ = 0.6754.

The approximate solutions of the kernels M(x, y), N(x, y),
γ(x), H(x, y), J(x, y), λ(x) are obtained from the conditions
(B.1)–(B.12), which are two groups of coupled linear hyperbolic
PDE-ODE systems on the domain{(x, y)|0 ≤ x ≤ y ≤ L̄}. The
finite difference method is employed, with a step length of
0.5 m for y running from x to L̄. The approximate solutions
of K̄1(x), K̄2(x), K̄3, K̄4(x), K̄5(x), K̄6 are obtained from
conditions (C.1)–(C.6) by the finite difference method w.r.t.
x ∈ [0, L̄]. Based on the abovementioned approximate solutions,
N1, N2, Mα(x), Mβ(x), MX are obtained using (D.1)–(D.5).

C. Closed-Loop Responses

Fig. 4 shows the event-triggered control input, where the
minimal dwell-time is 0.297 s, which is much larger than the
conservative estimate τ = 0.15× 10−9 of the minimal dwell-
time. If the design parameter η is picked as a smaller one 0.106
(other design parameters are not changed), compared with the
first value η = 0.11 defined in the last section, the number
of update times of the control input decreases from 373 to
361, i.e., the actuation frequency is further reduced. However,
the control performance is slightly degraded because η also
affects the convergence rate of the closed-loop system. The
result of θŴT (t)P0Ŵ (t)− μm(t)− d(t)2 is shown in Fig. 5,
from which we can see that d(t)2 ≤ θŴT (t)P0Ŵ (t)− μm(t)
is guaranteed all the time. The time evolution of the internal
dynamic variablem(t) is given in Fig. 6, which showsm(t) < 0.
Fig. 7 shows the convergence of the ODE statesX(t), Y (t), i.e.,
the suppression of the axial vibration velocity of the cage and the
regulation of the moving velocity of the hydraulic rod in the hy-
draulic cylinder at the head sheaves. Integrations ofX(t), Y (t),
i.e., the axial vibration displacement of the cage and the move-
ment of the hydraulic rod in the hydraulic cylinder, are shown
in Fig. 8 under the initial elastic displacement of 0.005 m at the

Fig. 5. Result of θŴT (t)P0Ŵ (t)− μm(t)− d(t)2.

Fig. 6. Internal dynamic variable m(t).

Fig. 7. Axial vibration velocity of the cage X(t) and moving velocity of
the hydraulic rod in the hydraulic cylinder Y(t).

Fig. 8. Axial vibration displacement of the cage (initial elastic dis-
placement 0.005 m) and movement of the hydraulic rod in the hydraulic
cylinder (initial position 0.001 m).
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Fig. 9. Response of z(x, t).

Fig. 10. Response of w(x, t).

Fig. 11. Axial vibration energy VE of the cable.

cable-cage connection point, and the initial position 0.001 m
of the hydraulic rod. Figs. 9 and 10 show the convergence of
the PDE states z(x, t), w(x, t). The axial vibration energy of

the cable, VE = 1
2ρ‖ut(·, t)‖2 +

R2
dπE

8 ‖ux(·, t)‖2 is converted

into VE =
ER2

d

8πEπρR2
d
‖z(·, t)− w(·, t)‖2 + ρ

8‖z(·, t) + w(·, t)‖2
using (147) and (148). It is observed from Fig. 11 that the axial
vibration energy of the cable is reduced with the help of the
proposed event-based vibration control system.

VIII. CONCLUSION

In this article, an event-triggered output-feedback backstep-
ping boundary controller for an ODE-2× 2 hyperbolic PDE-
ODE system is proposed. An observer design using only one
measurement at the PDE actuated boundary and a two-step
control design, including the design of a low-pass-filter-based
backstepping continuous-in-time boundary control law, and the
subsequent design of an ETM, which determines triggering
times of updating the obtained continuous-in-time control law,

are proposed. The existence of a minimal dwell-time between
two triggering times and the achievement of exponential conver-
gence in the event-based output-feedback closed-loop system
are proved. The proposed event-based controller is applied into
axial vibration control of a mining cable elevator consisting of
the hydraulic-driven head sheaves, mining cable, and cage in
the simulation, where the results show the controller effectively
suppresses the axial vibration energy and the actual minimal
dwell-time between two triggering times is much larger than
the conservative estimate one. In future work, an event-based
observer and a time-varying PDE domain according to the time-
varying length of cable in the ascending/descending process will
be considered in the control design.

APPENDIX

A. The functions φ̄, φ̄1, ψ̄, ψ̄1 on {(x, y)|0 ≤ y ≤ x ≤ 1} and
γ̄, ϕ̄ on {0 ≤ x ≤ 1}, in (19), (20), satisfy

− q1φ̄x(x, y)− q1φ̄y(x, y)− c1ψ̄(x, y) = 0 (A.1)

q2ψ̄x(x, y)− q1ψ̄y(x, y)

− (c2 − c1)ψ̄(x, y)− c2φ̄(x, y) = 0 (A.2)

φ̄(1, y) =
1

q
CK1(y) +

1

q
ψ̄(1, y) (A.3)

ψ̄(x, x) = − c2
q1 + q2

(A.4)

q2φ̄1y(x, y)− q1φ̄1x(x, y)

+ (c2 − c1)φ̄1(x, y)− c1ψ̄1(x, y) = 0 (A.5)

q2ψ̄1y(x, y) + q2ψ̄1x(x, y)− c2φ̄1(x, y) = 0 (A.6)

ψ̄1(1, y) = qφ̄1(1, y)− CK2(y) (A.7)

φ̄1(x, x) =
c1

q1 + q2
(A.8)

− q2ϕ̄
′(x) + ϕ̄(x)Ā0 + c2γ̄(x) + c2ϕ̄(x) = 0 (A.9)

q1γ̄
′(x) + γ̄(x)Ā0 + c1γ̄(x) + c1ϕ̄(x) = 0 (A.10)

ϕ̄(0) = −C0 (A.11)

γ̄(0) = −C0 (A.12)

and K1(y),K2(y) are the solutions of the following ODEs:

−q1K1
′(y) +AK1(y) + c1K1(y)−Bφ̄(1, y) = 0 (A.13)

K1(1) =
Lq −B

q1
(A.14)

q2K2
′(y) +AK2(y) + c2K2(y)−Bφ̄1(1, y) = 0 (A.15)

K2(1) =
L

q2
. (A.16)

Regarding the conditions (A.1)–(A.12), (A.13)–(A.16), sets
(A.1)–(A.4), (A.13), (A.14) and (A.5)–(A.8), (A.15), (A.16) are
two independent 2× 2 hyperbolic PDE-ODE systems, whose
well-posedness can be obtained following the proof of [43,
Lemma 1]. Solving (A.9)–(A.12) is an initial value problem
and explicit solutions can be obtained. Therefore, (A.1)–(A.12),
(A.13)–(A.16) are well-posed.
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B. The conditions of the kernels M , N , H , J on {(x, y)|0 ≤
x ≤ y ≤ 1} and γ, λ on {0 ≤ x ≤ 1}, in (31) and (32), are given
by

q1M(x, 1)− q2N(x, 1)q − γ(x)B = 0 (B.1)

(q2 + q1)N(x, x)− c1 = 0 (B.2)

c1M(x, y)− q1Nx(x, y) + q2Ny(x, y)

+(c2 − c1)N(x, y) = 0 (B.3)

c2N(x, y)− q1Mx(x, y)− q1My(x, y) = 0 (B.4)

γ(1) = −K (B.5)

−q1γ′(x)− γ(x)A− c1γ(x)− q2N(x, 1)C = 0 (B.6)

q1H(x, 1)− q2J(x, 1)q − λ(x)B = 0 (B.7)

−c2 − (q1 + q2)H(x, x) = 0 (B.8)

c1H(x, y) + q2Jx(x, y) + q2Jy(x, y) = 0 (B.9)

q2Hx(x, y)− q1Hy(x, y)

+c2J(x, y) + (c1 − c2)H(x, y) = 0 (B.10)

q2λ
′(x)− λ(x)A− c2λ(x)− q2J(x, 1)C = 0 (B.11)

qγ(1)− λ(1) + C = 0. (B.12)

C. In (33) and (34), K̄1(x), K̄2(x), K̄3, K̄4(x), K̄5(x), K̄6 are
the solutions of the following linear Volterra integral equations
of the second kind:

K̄1(x) = pH(0, x)−M(0, x) +

∫ x

0

K̄1(y)M(y, x)dy

+

∫ x

0

K̄2(y)H(y, x)dy (C.1)

K̄2(x) = − pJ(0, x) +N(0, x) +

∫ x

0

K̄1(y)N(y, x)dy

+

∫ x

0

K̄2(y)J(y, x)dy (C.2)

K̄3 =

∫ 1

0

K̄2(x)λ(x)dx+

∫ 1

0

K̄1(x)γ(x)dx

+ pλ(0)− γ(0) (C.3)

K̄4(x) =

∫ x

0

K̄4(y)M(y, x)dy +

∫ x

0

K̄5(y)H(y, x)dy

− E0H(0, x) (C.4)

K̄5(x) =

∫ x

0

K̄4(y)N(y, x)dy +

∫ x

0

K̄5(y)J(y, x)dy

+ E0J(0, x) (C.5)

K̄6 =

∫ 1

0

K̄5(x)λ(x)dx+

∫ 1

0

K̄4(x)γ(x)dx

+ E0λ(0). (C.6)

D. Expressions for N1, N2,Mα,Mβ ,MX are

N1 = C0
+K̄3B − q1C0

+K̄1(1) + q2C0
+K̄2(1)q (D.1)

N2 = E0 − q2C0
+K̄2(0) + q1C0

+K̄1(0)p (D.2)

Mα(x) = K̄4(x) + q1C0
+K̄ ′

1(x)− (Â0 + c1)C0
+K̄1(x)

(D.3)

Mβ(x) = K̄5(x)− q2C0
+K̄ ′

2(x)− (Â0 + c2)C0
+K̄2(x)

(D.4)

MX = C0
+K̄3Â+ K̄6 − Â0C0

+K̄3. (D.5)
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