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Event-Triggered Adaptive Control of a Parabolic
PDE–ODE Cascade With Piecewise-Constant

Inputs and Identification
Ji Wang , Member, IEEE, and Miroslav Krstic , Fellow, IEEE

Abstract—We present an adaptive event-triggered
boundary control scheme for a parabolic partial differential
equation–ordinary differential equation (PDE–ODE) system,
where the reaction coefficient of the parabolic PDE and the
system parameter of a scalar ODE, are unknown. In the
proposed controller, the parameter estimates, which are
built by batch least-square identification, are recomputed
and the plant states are resampled simultaneously. As
a result, both the parameter estimates and the control
input employ piecewise-constant values. In the closed-loop
system, the following results are proved: 1) the absence
of a Zeno phenomenon; 2) finite-time exact identification
of the unknown parameters under most initial conditions
of the plant (all initial conditions except a set of measure
zero); and 3) exponential regulation of the plant states to
zero. A simulation example is presented to validate the
theoretical result.

Index Terms—Adaptive control, backstepping, event-
triggered control, least-squares identifier, parabolic PDEs.

I. INTRODUCTION

A. Boundary Control of Parabolic PDEs

Parabolic partial differential equations (PDEs) are predomi-
nately used in describing fluid, thermal, and chemical dynamics,
including many applications of sea ice melting and freezing [28],
[61], continuous casting of steel [41] and lithium-ion batter-
ies [27], [51]. These therefore give rise to related important
control and estimation problems of parabolic PDEs.

The backstepping approach has been verified as a very pow-
erful tool for boundary stabilization of PDEs, with many advan-
tages, such as avoiding operator Riccati equations that are very
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hard to solve for PDEs, and no need for model reduction that
often plays an important role in most methods for PDE control
design [32, Ch. 1]. The first backstepping boundary control
design for parabolic PDEs was introduced in [35] and [36].
Subsequently, more results about boundary control of parabolic
PDEs have emerged in the past decade, such as [5], [8], [9],
[39], [40], and [42]. In addition to the backstepping method, a
forwarding approach, which was first introduced in [38], is also
applied to stabilize the hyperbolic PDE systems in [37] and [53],
and parabolic PDEs in [6].

In addition to the aforementioned works on parabolic PDEs,
topics concerning parabolic PDE–ODE coupled systems are also
popular, which have a rich physical background, such as coupled
electromagnetic, coupled mechanical, and coupled chemical
reactions [50]. Backstepping stabilization of a parabolic PDE in
cascade with a linear ODE has been primarily presented in [30]
with Dirichlet-type boundary interconnection and, the results
on Neuman boundary interconnection were presented in [48]
and [50]. Besides, backstepping boundary control designs of a
parabolic PDE sandwiched by two ODEs were presented in [10]
and [55].

In this article, we deal with a cascade of reaction–diffusion
PDE and ODE. For the reaction–diffusion PDE subsystem,
the reaction term perturbs the diffusion behavior of the basic
heat equation, and there would be many unstable eigenvalues
for a positive and large reaction coefficient. Besides, the ODE
subsystem also can be in an unstable form when the system
parameter is positive.

B. Event-Triggered Control of PDEs

When implementing the continuous-in-time controllers into
digital platforms, sampling needs to be addressed properly to
ensure the stability of the closed-loop system. Compared with
periodical sampling, i.e., sampled-data scheme [21], the event-
triggered strategy is more efficient in the aspect of using com-
munication and computational resources, because the sampling
happens only when needed.

Most current event-triggered control are designed for ODE
systems, such as in [17], [19], [45], and [49]. For event-triggered
control in PDE systems, some pioneering attempts were pro-
posed relaying on distributed (in-domain) control inputs [44],
[62] or modal decomposition [25], [26]. Recently, using the
infinite-dimensional control approach, the state-feedback event-
triggered boundary control for a class of 2× 2 hyperbolic
PDEs was first presented in [14], and then was extended to
the output-feedback case in [12]. Output-feedback event-trigged
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boundary control of a sandwich hyperbolic PDE system was also
proposed in [56]. For parabolic PDEs, some important results
on event-triggered boundary control were presented in [15],
[25], and [43], on the basis of the backstepping method and the
modal decomposition approach, respectively. The abovemen-
tioned event-triggered control design only focused on a PDE
plant with completely known parameters while there always
exist some plant parameters not known exactly in practice, which
creates a need for incorporating adaptive technology.

C. Triggered Adaptive Control of PDEs

Three traditional adaptive schemes are the Lyapunov design,
the passivity-based design, and the swapping design [29], which
were initially developed for ODEs in [31], and extended to
parabolic PDEs in [1], [2], [33], [34], [46], and [47], and hy-
perbolic PDEs in [3], [7].

A new adaptive scheme, using a regulation-triggered batch
least-square identifier (BaLSI), was introduced in [20] and [22],
which has at least two significant advantages over the previous
traditional adaptive approaches: guaranteeing exponential reg-
ulation of the states to zero, as well as finite-time convergence
of the estimates to the true values. An application of this new
adaptive scheme to a two-link manipulator, which is modeled by
a highly nonlinear ODE system and subject to four parametric
uncertainties, was shown in [4]. Regarding PDEs, this method
has been applied in adaptive control of a parabolic PDE in [24],
and of first-order hyperbolic PDEs in [58] and [60]. In the above
designs, the triggering is employed for the parameter estima-
tor (update law), rather than the control law, where the plant
states are not sampled. Conversely, in [57], an event-triggered
adaptive control design was proposed by employing triggering
for the control law instead of the parameter estimator, where
only asymptotic convergence is achieved. Recently, a triggered
adaptive control design, where the triggering is employed for
updating both the parameter estimator and the plant states in the
control law, is proposed for hyperbolic PDEs in [59]. This article
is the parabolic cousin of [59]. As a result, both the parameter
estimates and the control input employ piecewise-constant val-
ues, and exponential regulation of the states in the parabolic
PDE–ODE cascade is achieved.

D. Contributions

1) As compared to the previous results in [15] and [43] on
event-triggered backstepping control for parabolic PDEs
with completely known plant parameters, uncertain plant
parameters and additional ODE dynamics are considered
in this article.

2) Different from adaptive control designs of parabolic
PDEs in [33], [46], and [47] where the control input is
continuous-in-time, in this article, the control signal is
piecewise-constant, and, moreover, the exact parameter
identification (for all initial conditions of the plant except
a set of measure zero) as well as exponential regulation
to zero of the plant states are achieved.

3) Compared with the triggered-type adaptive control de-
signs for parabolic PDE in [24], where triggering is only
employed for the parameter update law rather than the
plant states in the controller, in this article, triggering

is employed for both updating the parameter estimator
and resampling the plant states in the controller and, as
a result, both the parameter estimates and the control
input employ piecewise-constant values. Moreover, an
additional uncertain ODE at the uncontrolled boundary
of the parabolic PDE is considered in this article.

4) To the best of our knowledge, this is the first adap-
tive event-triggered boundary control result of parabolic
PDEs. The result is new even if the ODE dynamics is
removed.

E. Organization

The problem formulation is shown in Section II. The nominal
continuous-in-time control design is presented in Section III.
The design of event-triggered control with piecewise-constant
parameter identification is proposed in Section IV. The absence
of a Zeno phenomenon, parameter estimate convergence, and
exponential regulation are proved in Section V. The effec-
tiveness of the proposed design is illustrated by a numerical
example in Section VI. Finally, Section VII concludes this
article.

F. Notation

We adopt the following notation.
1) The symbol N denotes the set of natural numbers includ-

ing zero, and the notation N∗ for the set {1, 2, . . .}, i.e.,
the natural numbers without 0. We also denote R+ :=
[0,+∞) and R− := (−∞, 0).

2) Let U ⊆ Rn be a set with nonempty interior and let
Ω ⊆ R be a set. By C0(U ; Ω), we denote the class of
continuous mappings on U , which take values in Ω. By
Ck(U ; Ω), where k ≥ 1, we denote the class of contin-
uous functions on U , which have continuous derivatives
of order k on U and take values in Ω.

3) We use the notation L2(0, 1) for the standard space of the
equivalence class of square-integrable, measurable func-

tions defined on (0, 1) and ‖f‖ =
(∫ 1

0 f(x)
2dx
) 1

2

<

+∞ for f ∈ L2(0, 1).
4) For an I ⊆ R+, the space C0(I;L2(0, 1)) is the space of

continuous mappings I � t 	→ u[t] ∈ L2(0, 1).
5) Let u : R+ × [0, 1] → R be given. We use the notation
u[t] to denote the profile of u at certain t ≥ 0, i.e.,
(u[t])(x) = u(x, t), for all x ∈ [0, 1].

II. PROBLEM FORMULATION

We conduct the control design based on the following
parabolic PDE–ODE system:

ζ̇(t) = aζ(t) + bu(0, t) (1)

ut(x, t) = εuxx(x, t) + λu(x, t) (2)

ux(0, t) = 0 (3)

ux(1, t) + qu(1, t) = U(t) (4)

for x ∈ [0, 1], t ∈ [0,∞), where ζ(t) is a scalar ODE state and
u(x, t) is a PDE state. The function U(t) is the control input to
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be designed. The parameters ε, λ, and a are arbitrary, and b �= 0.
The ODE system parameter a and the coefficient λ of the PDE
in-domain couplings are unknown.

Assumption 1: The bounds of the unknown parameters λ and
a are known and arbitrary, i.e., λ ≤ λ ≤ λ, a ≤ a ≤ a, where
λ, λ, a, and a are arbitrary positive constants whose values are
known.

We define a vector θ that includes the two unknown parame-
ters λ and a, i.e.,

θ = [λ, a]T . (5)

Assumption 2: The parameter q satisfies

q >
1

4
+

λ

2ε
.

Assumption 2 avoids the use of the signal u(1, t) in the
nominal control law, whose purpose is to ensure no Zeno be-
havior in the event-based system. For the reaction–diffusion
equation, an eigenfunction expansion of the solution of (2)–(4)
with U(t) = 0 shows that the parabolic PDE system is unstable
when λ > επ2/4, no matter what q > 0 is [43].

The motivation of the considered PDE–ODE cascade is from
control of uncertain thermal-fluid systems [54] with uncertain
finite-dimensional sensor dynamics. We only consider a scalar
ODE in this article with the purpose of presenting the proposed
control design more clearly. With a modest modification, the
result in this article is possible to extend to the case that the
ODE state is a vector and the system matrix and input matrix
in the ODE are linear functions of unknown parameters. We
reiterate here that the result in this article is new even if the
ODE (1) is absent.

III. NOMINAL CONTROL DESIGN

In the nominal control design, similar to [10], we apply
three transformations to convert the original plant (1)–(4) to an
exponentially stable target system.

We introduce the following backstepping transformation [32,
(4.55)]:

w(x, t) = u(x, t)−
∫ x

0

Ψ(x, y)u(y, t)dy (6)

where

Ψ(x, y) = −λ

ε
x
I1(
√

λ(x2 − y2)/ε)√
λ(x2 − y2)/ε

(7)

and I1 denotes the modified Bessel functions of the first kind,
to convert the plant (1)–(4) to the system

ζ̇(t) = aζ(t) + bw(0, t) (8)

wt(x, t) = εwxx(x, t) (9)

wx(0, t) = 0 (10)

wx(1, t) + rw(1, t) = U(t) + (r − q −Ψ(1, 1))u(1, t)

−
∫ 1

0

(
Ψx(1, y) + qΨ(1, y)

+ Ψ(1, y)(r − q)

)
u(y, t)dy (11)

where r is a positive constant that will be determined later.
Following [32, Sec. 4.5], the inverse transformation of (6) is

shown as

u(x, t) = w(x, t) +

∫ x

0

Φ(x, y)w(y, t)dy (12)

where

Φ(x, y) = −λ

ε
x
J1(
√

λ(x2 − y2)/ε)√
λ(x2 − y2)/ε

(13)

and J1 denotes the (nonmodified) Bessel functions of the first
kind.

Applying the second transformation,

v(x, t) = w(x, t)− γ(x)ζ(t) (14)

where

γ(x) = −κ cos
(√

(bκ− a)

ε
x

)
(15)

we convert the system (8)–(11) into the following intermediate
system:

ζ̇(t) = − amζ(t) + bv(0, t) (16)

vt(x, t) = εvxx(x, t)− γ(x)bv(0, t) (17)

vx(0, t) = 0 (18)

vx(1, t) + rv(1, t) = U(t)− γ′(1)ζ(t)− rγ(1)ζ(t)

+ (r − q −Ψ(1, 1))u(1, t)

−
∫ 1

0

(
Ψx(1, y) + qΨ(1, y)

+ Ψ(1, y)(r − q)

)
u(y, t)dy (19)

where

am = bκ− a > 0 (20)

is ensured by a design parameter κ satisfying

κ >
a

b
. (21)

See Appendix A for the calculation of the conditions of γ(x) by
matching (8)–(11) and (16)–(19) via (14).

We introduce the third transformation

β(x, t) = v(x, t)−
∫ x

0

h(x, y)v(y, t)dy (22)

where the kernelh(x, y) is to be determined, to convert (16)–(19)
into the target system

ζ̇(t) = − amζ(t) + bβ(0, t) (23)

βt(x, t) = εβxx(x, t) (24)

βx(0, t) = 0 (25)

βx(1, t) = − rβ(1, t) (26)

where

r = q +Ψ(1, 1) + h(1, 1) = q − λ

2ε
>

1

4
(27)
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with recalling Ψ(1, 1) = − λ
2ε considering (7), and h(1, 1) = 0

is derived from the last two conditions of h(x, y), which are
shown next, and Assumption 2.

By matching (23)–(25) and (16)–(18) via (22) (see Ap-
pendix B for details), the conditions of h(x, y) are obtained
as

hy(x, 0)ε+ γ(x)b− b

∫ x

0

h(x, y)γ(y)dy = 0 (28)

hyy(x, y)− hxx(x, y) = 0 (29)

hy(x, x) + hx(x, x) = 0 (30)

h(0, 0) = 0 (31)

which is covered by the ones found in [11] which ensures that
(28)–(31) have a piecewise C2-solution.

For (26) to hold, the control input is chosen as

U(t) =

∫ 1

0

K1(1, y; θ)u(y, t)dy +K2(1; θ)ζ(t) (32)

where

K1(1, y; θ) = Ψx(1, y) + hx(1, y) + rh(1, y)

+

(
q − λ

2ε

)
Ψ(1, y)

−
∫ 1

y

(hx(1, z) + rh(1, z))Ψ(z, y)dz (33)

K2(1; θ) = γ′(1) +
(
q − λ

2ε

)
γ(1)

−
∫ 1

0

(hx(1, y) + rh(1, y))γ(y)dy. (34)

Writing θ = [λ, a]T in K1 and K2 emphasizes the fact that K1

andK2 depend on the unknown parameters λ and a (the kernels
Ψ, γ, and h defined in (7), (15), and (28)–(31) include these
unknown parameters).

According to [10], there exists kernel hI(x, y) ∈ R for the
inverse transformation of (22), which is shown as

v(x, t) = β(x, t)−
∫ x

0

hI(x, y)β(y, t)dy. (35)

In summary, with the purpose of building the nominal control
law, in this section, we apply three transformations to convert
the original system to the target system. The first transformation
is to “eliminate” the reaction term λu(x, t), which is a source
of instability, in (2). Then, we are to make the ODE (1) in a
stable form with compensating heat PDE dynamics at its input,
like [30]. We use the second transformation (14) to make the
system coefficient of the ODE (1) as negative, and apply the last
transformation to compensate the residual term γ(x)bv(0, t),
which results from applying the second transformation, in (17).

IV. EVENT-TRIGGERED CONTROL DESIGN WITH

PIECEWISE-CONSTANT PARAMETER IDENTIFICATION

Based on the nominal continuous-in-time feedback (32), we
give the form of an adaptive event-triggered control law Ud, as

follows:

Udi := Ud(ti) =

∫ 1

0

K1(1, y; θ̂(ti))u(y, ti)dy

+K2(1; θ̂(ti))ζ(ti) (36)

for t ∈ [ti, ti+1), where

θ̂ = [̂λ, â]T (37)

is an estimate, which is generated with a triggered BaLSI, of
the two unknown parameters λ and a. The identifier and the
sequence of time instants {ti ≥ 0}∞i=0, i ∈ N, are defined in
the next section.

Inserting the piecewise-constant control input Udi into (4),
the boundary condition becomes

ux(1, t) + qu(1, t) = Udi. (38)

When we mention the continuous-in-state control signal Uc,
we refer to the signal consisting of triggered parameter estimates
and continuous states, i.e.,

Uc(t) =

∫ 1

0

K1(1, y; θ̂(ti))u(y, t)dy +K2(1; θ̂(ti))ζ(t)

(39)
for t ∈ [ti, ti+1). The signal Uc does not act as the control input
of the plant but used in the event-triggering mechanism (ETM),
which will be shown latter.

Define the difference between the continuous-in-state control
signalUc in (39) and the event-triggered control inputUd in (36)
as d(t), given by

d(t) = Uc(t)− Udi

=

∫ 1

0

K1(1, y; θ̂(ti))(u(y, t)− u(y, ti))dy

+K2(1; θ̂(ti))(ζ(t)− ζ(ti)) (40)

for t ∈ [ti, ti+1), which reflects the deviation of the plant states
from their sampled values and will be used in building the ETM.

Define the difference between the continuous-in-state control
signal Uc(t) in (39) and the nominal continuous-in-time control
input U(t) in (32) as p(t), given by

p(t) = U(t)− Uc(t)

=

∫ 1

0

(K1(1, y; θ)−K1(1, y; θ̂(ti)))u(y, t)dy

+ (K2(1; θ)−K2(1; θ̂(ti)))ζ(t), t ∈ [ti, ti+1) (41)

which reflects the deviation of the estimates from the actual
unknown parameters.

The deviations d(t) and p(t) will be used in the following
design and analysis.

A. ETM

The sequence of time instants {ti ≥ 0}∞i=0 (t0 = 0) is defined
as

ti+1 = min{inf{t > ti : d(t)
2 ≥ −ξm(t)}, ti + T} (42)

where the positive constant ξ is a design parameter, and another
design parameter T > 0 sets the maximum dwell-time with the

Authorized licensed use limited to: Xiamen University. Downloaded on March 16,2024 at 08:55:38 UTC from IEEE Xplore.  Restrictions apply. 



WANG AND KRSTIC: EVENT-TRIGGERED ADAPTIVE CONTROL OF A PARABOLIC PDE–ODE CASCADE 5497

purpose of avoiding the less frequent updates of the parameter
estimates, which may lead to a large overshoot in the response
of the closed-loop system.

The dynamic variable m(t) in (42) satisfies the ordinary
differential equation

ṁ(t) = −ηm(t) + λdd(t)
2 − κ1u(1, t)

2 − κ2u(0, t)
2

− κ3‖u(·, t)‖2 − κ4ζ(t)
2 (43)

for t ∈ (ti, ti+1) with m(t0) = m(0) < 0, and m(t−i ) =
m(ti) = m(t+i ). Here, t+i and t−i are the right and left limits
of t = ti. It is worth noting that the initial condition for m(t)
in each time interval has been chosen such that m(t) is time
continuous. The positive design parameters κ1, κ2, κ3, and κ4
are determined later. Inserting d(t)2 ≤ −ξm(t) guaranteed by
(42) into (43), we have

ṁ(t) ≤ − (η + λdξ)m(t)− κ1u(1, t)
2 − κ2u(0, t)

2

− κ3‖u(·, t)‖2 − κ4ζ(t)
2. (44)

Next, we showm(t) < 0 all the time underm(0) < 0. Multiply-
ing both sides of (44) by e(η+λdξ)t, then moving e(η+λdξ)t(η +
λdξ)m(t) from the right-hand side to the left-hand side, yields

ṁ(t)e(η+λdξ)t + e(η+λdξ)t(η + λdξ)m(t)

≤ −e(η+λdξ)t(κ1u(1, t)
2 + κ2u(0, t)

2

+ κ3‖u(·, t)‖2 + κ4ζ(t)
2).

That is,

d(m(t)e(η+λdξ)t)

dt
≤ − e(η+λdξ)t

(
κ1u(1, t)

2 + κ2u(0, t)
2

+ κ3‖u(·, t)‖2 + κ4ζ(t)
2
)
. (45)

Integration of (45) from 0 to t yields

m(t) ≤ m(0)e−(η+λdξ)t

−
∫ t

0

e−(η+λdξ)(t−�)
(
κ1u(1, �)

2 + κ2u(0, �)
2

+ κ3‖u(·, �)‖2 + κ4ζ(�)
2
)
d�. (46)

Becausem(0) < 0, both terms on the right-hand side of (46) are
less than zero. Therefore, m(t) < 0.

For the proposed ETM (42), the maximal dwell-time is T . For
some design parameters κ1, κ2, κ3, and κ4, the minimal dwell-
time is larger than a positive constant, i.e., no Zeno behavior,
which will be proved in Lemma 2.

B. BaLSI

According to (1) and (2), we get for τ > 0 and n ∈ N∗ that

d

dτ

(∫ 1

0

sin(xπn)u(x, τ)dx− 1

b
επnζ(τ)

)

= ε

∫ 1

0

sin(xπn)uxx(x, τ)dx

+ λ

∫ 1

0

sin(xπn)u(x, τ)dx− 1

b
επnζ̇(τ)

= − επn cos(πn)u(1, τ) + επnu(0, τ)

− a

b
επnζ(τ)− επnu(0, τ)

−επ2n2
∫ 1

0

sin(xπn)u(x, τ)dx+λ

∫ 1

0

sin(xπn)u(x, τ)dx

= − επn cos(πn)u(1, τ)− επ2n2
∫ 1

0

sin(xπn)u(x, τ)dx

+ λ

∫ 1

0

sin(xπn)u(x, τ)dx− 1

b
aεπnζ(τ). (47)

Define

μi+1 := min{td : d ∈ {0, . . . , i}, td ≥ ti+1 − ÑT} (48)

according to [22], where the positive integer Ñ ≥ 1 is a free de-
sign parameter (a larger Ñ will make the least-squares identifier
run based on a bigger set of data, which makes the identifier more
robust with respect to measurement errors), and the positive
constant T is the maximum dwell-time in (42). Integrating (47)
from μi+1 to t yields

fn(t, μi+1) = λgn,1(t, μi+1) + agn,2(t, μi+1) (49)

where

fn(t, μi+1) =

∫ 1

0

sin(xπn)u(x, t)dx− 1

b
επnζ(t)

−
∫ 1

0

sin(xπn)u(x, μi+1)dx+
1

b
επnζ(μi+1)

+

∫ t

μi+1

[
επn(−1)nu(1, τ)

+ επ2n2
∫ 1

0

sin(xπn)u(x, τ)dx

]
dτ (50)

gn,1(t, μi+1) =

∫ t

μi+1

∫ 1

0

sin(xπn)u(x, τ)dxdτ (51)

gn,2(t, μi+1) = − 1

b
επn

∫ t

μi+1

ζ(τ)dτ (52)

for n ∈ N∗.
Define the function hi,n : R2 → R+ by the formula:

hi,n(
) =

∫ ti+1

μi+1

(fn(t, μi+1)− 
1gn,1(t, μi+1)

− 
2gn,2(t, μi+1))
2 dt (53)

for i ∈ N, n ∈ N∗, and 
 = [
1, 
2]
T .

According to (49), the function hi,n(
) in (53) has a global
minimum hi,n(θ) = 0. According to [24], applying Fermat’s
theorem (of extrema)—that is, differentiating the functions
hi,n(
) defined by (53) with respect to 
1, 
2, respectively, and
making the derivatives at the position of the global minimum
(
1, 
2) = (λ, a) as zero—we have that the following matrix
equation hold for every i ∈ N and n ∈ N∗:

Zn(μi+1, ti+1) = Gn(μi+1, ti+1)θ (54)
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where

Zn(μi+1, ti+1) = [Hn,1(μi+1, ti+1), Hn,2(μi+1, ti+1)]
T

(55)

Gn(μi+1, ti+1) =

[
Qn,1(μi+1, ti+1) Qn,2(μi+1, ti+1)
Qn,2(μi+1, ti+1) Qn,3(μi+1, ti+1)

]
(56)

with

Hn,1(μi+1, ti+1) =

∫ ti+1

μi+1

gn,1(t, μi+1)fn(t, μi+1)dt (57)

Hn,2(μi+1, ti+1) =

∫ ti+1

μi+1

gn,2(t, μi+1)fn(t, μi+1)dt (58)

Qn,1(μi+1, ti+1) =

∫ ti+1

μi+1

gn,1(t, μi+1)
2dt (59)

Qn,2(μi+1, ti+1) =

∫ ti+1

μi+1

gn,1(t, μi+1)gn,2(t, μi+1)dt (60)

Qn,3(μi+1, ti+1) =

∫ ti+1

μi+1

gn,2(t, μi+1)
2dt. (61)

The parameter estimator (update law) is defined as

θ̂(ti+1) = argmin

{
|
− θ̂(ti)|2 : 
 ∈ Θ,

Zn(μi+1, ti+1) = Gn(μi+1, ti+1)
, n ∈ N∗
}

(62)

where Θ = {
 ∈ R2 : λ ≤ 
1 ≤ λ, a ≤ 
2 ≤ a}.

C. Well-Posedness Issues

With the variation-of-constants formula, we write the solution
to (1) as

ζ(t) = eatζ(0) + b

∫ t

0

ea(t−τ)u(0, τ)dτ. (63)

The well-posedness property is stated as follows.
Proposition 1: Between the time instants ti and ti+1,

for every u[ti] ∈ L2(0, 1), ζ(ti) ∈ R, and m(ti) ∈ R−,
there exist unique mappings u ∈ C0([ti, ti+1];L

2(0, 1)) ∩
C1((ti, ti+1)× [0, 1]) with u[t] ∈ C2([0, 1]), ζ ∈
C0([ti, ti+1];R), and m ∈ C0([ti, ti+1];R−), which satisfy
(2), (3), (38), (63), and (43).

Proof: The PDE subsystem (2), (3), (38) is identical
to [43, (1a), (1b), (20)]. According to [43, Proposition
4], whose proof depends on [23, Th. 4.11], we have
that for every u[ti] ∈ L2(0, 1), there exist a unique solu-
tion u ∈ C0([ti, ti+1];L

2(0, 1)) ∩ C1((ti, ti+1)× [0, 1]) with
u[t] ∈ C2([0, 1]) to (2), (3), and (38). It implies that the sig-
nal

∫ t

0 u(0, τ)dτ is time continuous. Considering (63), we
obtain ζ ∈ C0([ti, ti+1];R). Recalling (46) and the obtained
well posedness of the u-PDE and ζ-ODE, we have m ∈
C0([ti, ti+1];R−). Proposition 1 is obtained. �

Proposition 1 shows the solution of the closed-loop system is
unique and defined on t ∈ [0, limi→∞(ti)). We will then prove

Fig. 1. Block diagram of the closed-loop system.

no Zeno behavior in the closed-loop system, which guarantees
the solution is defined on R+.

D. Main Result

The block diagram of the closed-loop system is presented in
Fig. 1. The main result of this article is shown as follows.

Theorem 1: For all initial data u[0] ∈ L2(0, 1), ζ(0) ∈ R,
m(0) ∈ R−, and θ̂(0) ∈ Θ1, the closed-loop system, i.e., (1)–(4)
under the controller (36), with the ETM (42), (43), and the least-
squares identifier defined by (62), has the following properties:

1) No Zeno behavior.
2) Except for the case that both u[0] and ζ(0) are zero, there

exist positive constants M,σ (independent of initial data
u[0], ζ(0)) such that

Ω(t) ≤MΩ(0)e−σt, t ∈ [0,∞) (64)

where Ω(t) = ‖u[t]‖2 + ζ(t)2 + |m(t)|+ |θ̃(t)|. The
single bars | · | for θ̃(t) = θ − θ̂(t) denotes the Euclidean
norm.

3) If both u[0] and ζ(0) are zero, then u[t] ≡ 0, ζ(t) ≡ 0,
m(t) = m(0)e−ηt, and θ̂(t) ≡ θ̂(0) for t ∈ [0,∞)—that
is, all signals are bounded in the sense of

Ω(t) ≤ |m(0)|+
∣∣∣θ − θ̂(0)

∣∣∣ , t ∈ [0,∞). (65)

Proof: The proof is shown in next section. �
In the proposed control system, all conditions of the design

parameters are cascaded rather than coupled, and only depend
on the known parameters. An order of selecting the design
parameters is shown in Fig. 2.

Theorem 1 implies the exponential convergence to zero of
the plant states u[t], ζ(t) for all initial data u[0], ζ(0). The whole
states in the closed-loop system include the plant statesu[t], ζ(t),
the parameter estimate state θ̂(t), and the ETM internal dynamic
variable m(t). The exponential convergence of the whole states
is achieved, when the initial values of the parameter estimate
and ETM internal dynamic variable—that is, θ̂(0),m(0) that
are chosen by users—are in the given regions.

We take t0 = 0 is just to reduce the notational overload. In all
designs and proofs in this article, t0 = 0 makes no difference,
i.e., the initial time t0 = 0 can be replaced with a generic t0.
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Fig. 2. Order of selecting the design parameters.

V. PROOF OF THEOREM 1

The proof of Theorem 1 is divided into three parts: 1) there is
no Zeno behavior, which guarantees the solution of the closed-
loop system is unique and is defined on R+; 2) finite-time
exact parameter identification is achieved under most initial
conditions; 3) exponential regulation to zero of the plant states
is guaranteed. The first part is the proof of the first portion
of Theorem 1. The second part (convergence of the parameter
estimates) contributes to the third part—that is, the proofs of the
last two portions of Theorem 1.

A. No Zeno Behavior

First, we present the following lemma about the upper bound
of ḋ(t)2, which will be used to show no Zeno behavior.

Lemma 1: For d(t) defined in (40), there exist positive con-
stants ε1, ε2, ε3, ε4, and ε5 such that

ḋ(t)2 ≤ ε1d(t)
2 + ε2u(1, t)

2 + ε3u(0, t)
2

+ ε4‖u(·, t)‖2 + ε5ζ(t)
2 (66)

for t ∈ (ti, ti+1), where ε1, ε2, ε3, ε4, and ε5 only depend on the
design parameter κ in (21), the known plant parameters, and the
known bounds a, a, λ, and λ of the unknown parameters.

Proof: The event-triggered control input Ud is constant on
t ∈ (ti, ti+1), i.e., U̇d(t) = 0. Recalling Proposition 1, taking
the time derivative of (40), recalling (1)–(3), applying integration
by parts, we obtain that

ḋ(t) = U̇c(t)

= K1(1, 1; θ̂(ti))εux(1, t)−K1y(1, 1; θ̂(ti))εu(1, t)

+K1y(1, 0; θ̂(ti))εu(0, t)

+

∫ 1

0

K1yy(1, y; θ̂(ti))εu(y, t)dy

+

∫ 1

0

K1(1, y; θ̂(ti))λu(y, t)dy

+K2(1; θ̂(ti))aζ(t) +K2(1; θ̂(ti))bu(0, t) (67)

for t ∈ (ti, ti+1). Applying (40) and (41), it allows us to rewrite
(38) as

ux(1, t) + qu(1, t) = U(t)− p(t)− d(t). (68)

Inserting (68) into (67) to replace ux(1, t), we then have

ḋ(t) = −K1(1, 1; θ̂(ti))εd(t)−K1(1, 1; θ̂(ti))εp(t)

− (qK1(1, 1; θ̂(ti))ε+K1y(1, 1; θ̂(ti))ε)u(1, t)

+ (K1y(1, 0; θ̂(ti))ε+K2(1; θ̂(ti))b)u(0, t)

+

∫ 1

0

[K1yy(1, y; θ̂(ti))ε+K1(1, y; θ̂(ti))λ

+K1(1, 1; θ̂(ti))εK1(1, y; θ)]u(y, t)dy

+ (K2(1; θ̂(ti))a+K1(1, 1; θ̂(ti))εK2(1; θ))ζ(t)
(69)

for t ∈ (ti, ti+1), where (32) has been used.
Applying the Cauchy–Schwarz inequality into (41), we have

p(t)2 ≤ 2 max
ϑ1,ϑ2∈Θ

{∫ 1

0

(K1(1, y;ϑ1)−K1(1, y;ϑ2))
2dy

}

× ‖u[t]‖2

+ 2 max
ϑ1,ϑ2∈Θ

{(K2(1;ϑ1)−K2(1;ϑ2))
2}ζ(t)2.

(70)

Applying the Cauchy–Schwarz inequality into (69), using (70),
we then obtain (66), where

ε1 = 6ε2 max
ϑ∈Θ

{K1(1, 1;ϑ)
2} (71)

ε2 = 6max
ϑ∈Θ

{(qK1(1, 1;ϑ)ε+K1y(1, 1;ϑ)ε)
2} (72)

ε3 = 6max
ϑ∈Θ

{(K1y(1, 0;ϑ)ε+K2(1;ϑ)b)
2} (73)

ε4 = 12max
ϑ∈Θ

{∫ 1

0

(K1yy(1, y;ϑ)ε+K1(1, y;ϑ)λ)
2dy

}

+ 12ε2 max
ϑ∈Θ

{K1(1, 1;ϑ)
2}max

ϑ∈Θ

{∫ 1

0

K1(1, y;ϑ)
2dy

}

+ 12ε2 max
ϑ∈Θ

{K1(1, 1;ϑ)
2}

× max
ϑ1,ϑ2∈Θ

{∫ 1

0

(K1(1, y;ϑ1)−K1(1, y;ϑ2))
2dy

}
(74)

ε5 = 12ā2 max
ϑ∈Θ

{(K2(1;ϑ)
2}

+ 12ε2 max
ϑ∈Θ

{K1(1, 1;ϑ)
2}max

ϑ∈Θ
{
K2(1;ϑ)

2
}

+ 12ε2 max
ϑ∈Θ

{K1(1, 1;ϑ)
2}

× max
ϑ1,ϑ2∈Θ

{(K2(1;ϑ1)−K2(1;ϑ2))
2}. (75)

The proof of Lemma 1 is complete. �
Relying on Lemma 1, we then present the following lemma

that shows no Zeno behavior.
Lemma 2: For some positiveκ1, κ2, κ3, and κ4, there exists a

minimal dwell-time τ > 0 such that ti+1 − ti ≥ τ for all i ∈ N.
Proof: 1) If the event is triggered by the second condition,

i.e., ti+1 = ti + T , in (42), it is obvious that the dwell-time is
T > 0.
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2) Next, we consider the case that the event is triggered by
the first condition in (42). Define the following function ψ(t):

ψ(t) =
d(t)2 + 1

2ξm(t)

− 1
2ξm(t)

(76)

which was originally introduced in [14]. We have that
ψ(ti+1) = 1 because the event is triggered, and that ψ(ti) <
0 because of d(ti) = 0 according to (40). The function
ψ(t) is a continuous function on [t+i , t

−
i+1] recalling (40)

and u ∈ C0([ti, ti+1];L
2(0, 1)), ζ ∈ C0([ti, ti+1];R), m ∈

C0([ti, ti+1];R−) in Proposition 1. By the intermediate value
theorem, there exists a t∗ ∈ (ti, ti+1) such that ψ(t) ∈ [0, 1]
when t ∈ [t∗, t−i+1]. The lower bound of dwell-time can be
founded as the minimal time it takes for ψ(t) from 0 to 1.

Taking the derivative of (76) for all t ∈ [t∗, ti+1), applying
Young’s inequality, using (66) in Lemma 1, and inserting (43),
we have

ψ̇ =
2d(t)ḋ(t) + 1

2ξṁ(t)

− 1
2ξm(t)

− ṁ(t)

m(t)
ψ

≤ 1

− 1
2ξm(t)

[
ε1d(t)

2 + ε2u(1, t)
2 + ε3u(0, t)

2

+ ε4‖u(·, t)‖2 + ε5ζ(t)
2 + d(t)2 − 1

2
ξηm(t)

+
1

2
ξλdd(t)

2 − 1

2
ξκ1u(1, t)

2 − 1

2
ξκ2u(0, t)

2

− 1

2
ξκ3‖u(·, t)‖2 − 1

2
ξκ4ζ(t)

2

]
− λdd(t)

2

m(t)
ψ + ηψ

− −κ1u(1, t)2 − κ2u(0, t)
2 − κ3‖u(·, t)‖2 − κ4ζ(t)

2

m(t)
ψ.

(77)

It is worth pointing out that the last term in (77) is less than zero.
Choose

κ1 ≥ 2ε2
ξ
, κ2 ≥ 2ε3

ξ
, κ3 ≥ 2ε4

ξ
, κ4 ≥ 2ε5

ξ
(78)

where ε2, ε3, ε4, and ε5 are given in (72)–(75), which only
depend on the design parameter κ in (21), the known plant
parameters, and the known boundsa, a, λ, and λof the unknown
parameters.

Then, (77) becomes

ψ̇ ≤ 1

− 1
2ξm(t)

[(
ε1 + 1 +

1

2
ξλd

)
d(t)2 − 1

2
ξηm(t)

]

− λdd(t)
2

m(t)
ψ + ηψ. (79)

Inserting

d(t)2

m(t)
=
d(t)2 + 1

2ξm(t)− 1
2ξm(t)

m(t)
= −1

2
ξ (ψ(t) + 1)

we obtain from (79) that

ψ̇ ≤ n1ψ
2 + n2ψ + n3 (80)

where n1 = 1
2λdξ, n2 = 1 + ε1 + ξλd + η, and n3 = 1 + η +

ε1 +
1
2ξλd are positive constants. It follows that the lower bound

of dwell-time in this case is

τa =

∫ 1

0

1

n3 + n2s+ n1 s2
ds > 0. (81)

Together with the result in 1), we have that the minimal dwell-
time τ is

τ = min{τa, T} > 0. (82)

The proof of this Lemma is complete. �
It follows from Lemma 2 that no Zeno phenomenon oc-

curs, i.e., limi→∞ ti = +∞, which allows the solution of the
closed-loop system to be defined on R+, and guarantee the
well-posedness of the closed-loop system recalling Proposition
1.

Corollary 1: For all initial data u[0] ∈ L2(0, 1), ζ(0) ∈
R, and m(0) ∈ R−, there exist unique mappings u ∈
C0(R+;L

2(0, 1))
⋂
C1(J × [0, 1]) with u[t] ∈ C2([0, 1]), ζ ∈

C0(R+;R), andm ∈ C0(R+;R−), which satisfy (2), (3), (38),
(63), and (46) for t > 0, where J = R+\{ti ≥ 0, i ∈ N}.

Proof: For every u[0] ∈ L2(0, 1), ζ(0) ∈ R, m(0)∈R−,
recalling Proposition 1, we have u ∈ C0([0, t1];L

2(0, 1))⋂
C1((0, t1)× [0, 1]) with u[t] ∈ C2([0, 1]), ζ ∈ C0([0, t1];

R), m ∈ C0([0, t1];R−). It implies that u[t1] ∈ L2(0, 1),
ζ(t1) ∈ R, m(t1) ∈ R−. Applying Proposition 1 for the in-
terval [t1, t2] again, we have the same regularity of the so-
lution. Through a step-by-step construction, applying Propo-
sition 1 repeatedly, we have that u ∈ C0([0, limi→∞ ti);
L2(0, 1))

⋂
C1(J̄ × [0, 1]) with u[t] ∈ C2([0, 1]), ζ ∈ C0

([0, limi→∞ ti);R), and m ∈ C0([0, limi→∞ ti);R−), where
J̄ = [0, limi→∞ ti)\{ti ≥ 0, i ∈ N}. Recalling Lemma 2 that
means limi→∞ ti = +∞, Corollary 1 is obtained. �

The proof of the first portion in Theorem 1 is complete. In
the next section, we will show the convergence of parameter
estimates, which will be used in the Lyapunov analysis about
exponential regulation of the plant states in the last section, i.e.,
the proofs of the last two portions in Theorem 1.

B. Convergence of Parameter Estimates

At the beginning of this section, we present the following
four lemmas that are required in showing the convergence of
parameter estimates.

Lemma 3: For Qn,1(μi+1, ti+1) and Qn,3(μi+1, ti+1) de-
fined by (59), (61) and (51), (52), the sufficient and necessary
conditions of Qn,1(μi+1, ti+1) = 0, Qn,3(μi+1, ti+1) = 0 for
all n ∈ N∗, are u[t] = 0, ζ(t) = 0 on t ∈ [μi+1, ti+1], respec-
tively.

Proof: Necessity: If Qn,1(μi+1, τi+1) = 0 for all n ∈ N∗,
then the definition (59) in conjunction with continuity of
gn,1(t, μi+1) for t ∈ [μi+1, τi+1] (a consequence of definition
(51) and the fact that u ∈ C0([μi+1, τi+1];L

2(0, 1))) implies

gn,1(t, μi+1) = 0, t ∈ [μi+1, τi+1] (83)

for all n ∈ N∗. According to the definition (51) and continu-
ity of the mapping τ → ∫ 1

0 sin(xπn)u[τ ]dx (a consequence
of the fact that u ∈ C0([μi+1, τi+1];L

2(0, 1)), (83) implies∫ 1

0 sin(xπn)u(x, τ)dx = 0, τ ∈ [μi+1, τi+1] for all n ∈ N∗.
Since the set {√2 sin(nπx) : n = 1, 2, . . .} is an orthonormal
basis of L2(0, 1), we have u[t] = 0 for t ∈ [μi+1, τi+1].
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Sufficiency: If u[t] = 0 on t ∈ [μi+1, τi+1], then
Qn,1(μi+1, τi+1) = 0 for all n ∈ N∗ is obtained directly,
according to (51) and (59).

By recalling (52) and (61), the fact that the sufficient and
necessary condition of Q3n(μi+1, ti+1) = 0 for all n ∈ N∗ is
ζ(t) = 0 on t ∈ [μi+1, ti+1], is obtained straightforwardly.

The proof of Lemma 3 is complete. �
Lemma 4: For the adaptive estimates defined by (62) based on

the data in the interval t ∈ [μi+1, ti+1], the following statements
hold.

1) If u[t] (or ζ(t)) is not identically zero for t ∈ [μi+1, ti+1],
then λ̂(ti+1) = λ (or â(ti+1) = a).

2) If u[t] (or ζ(t)) is identically zero for t ∈ [μi+1, ti+1],
then λ̂(ti+1) = λ̂(ti) (or â(ti+1) = â(ti)).

Proof: First, we define a set as follows,

Si :=

{

̄=(
1, 
2)

T ∈Θ : Zn(μi+1, ti+1) = Gn(μi+1, ti+1)
̄,

n ∈ N∗
}
, i ∈ N (84)

where Θ = {
̄ ∈ R2 : λ ≤ 
1 ≤ λ, a ≤ 
2 ≤ a}, and Zn and
Gn in (55) and (56) are associated with the plant states over
a time interval [μi+1, ti+1].

We prove the following four claims, from which the state-
ments in this lemma are concluded.

Claim 1: If u[t] is not identically zero and ζ(t) is identically
zero on t ∈ [μi+1, ti+1], then λ̂(ti+1) = λ and â(ti+1) = â(ti).

Proof: Because u[t] is not identically zero and ζ(t) is iden-
tically zero on t ∈ [μi+1, τi+1], there exists n ∈ N∗ such that
Qn,1(μi+1, τi+1) �= 0 recalling Lemma 3. Define the index set
I to be the set of alln ∈ N∗ withQn,1(μi+1, τi+1) �= 0. Accord-
ing to (52) and ζ(t) being identically zero on t ∈ [μi+1, τi+1],
we know that gn,2(t, μi+1) = 0 on t ∈ [μi+1, τi+1] for all n ∈
N∗. It follows that Qn,2(μi+1, τi+1) = 0, Qn,3(μi+1, τi+1) =
0, and Hn,2(μi+1, τi+1) = 0 for all n ∈ N∗ recalling (60),
(61), and (58). Recalling (55) and (56), then (84) im-
plies Si = {(
1, 
2) ∈ Θ : 
1 =

Hn,1(μi+1,τi+1)
Qn,1(μi+1,τi+1)

, n ∈ I}. Be-

cause (q1, q2) ∈ Si according to (54), it follows that
Si = {(q1, 
2) ∈ Θ : a ≤ 
2 ≤ a}. Therefore, (62) shows that
λ̂(τi+1) = λ and â(τi+1) = â(τi). �

Claim 2: If u[t] is identically zero and ζ(t) is not identically
zero on t ∈ [μi+1, ti+1], then λ̂(ti+1) = λ̂(ti) and â(ti+1) = a.

Proof: The proof of this claim is very similar to the proof of
Claim 1, and thus, it is omitted.

Claim 3: If u[t], ζ(t) are identically zero on t ∈ [μi+1, ti+1],
then λ̂(ti+1) = λ̂(ti) and â(ti+1) = â(ti).

Proof: In this case, Qn,1(μi+1, ti+1) = 0, Qn,2(μi+1,
ti+1) = 0, Qn,3(μi+1, ti+1) = 0, Hn,1(μi+1, ti+1) = 0, and
Hn,2(μi+1, ti+1) = 0 for all n ∈ N∗ according to (51), (52),
(57)–(61). It follows that Si = Θ, and then (62) shows that
λ̂(ti+1) = λ̂(ti), â(ti+1) = â(ti). �

Claim 4: If both u[t] and ζ(t) are not identically zero on
t ∈ [μi+1, ti+1], then λ̂(ti+1) = λ and â(ti+1) = a.

Proof: By virtue of (54) and (62), if Si is a singleton, then
it is nothing else but the least-squares estimate of the unknown
vector of parameters (λ, a) on the interval [μi+1, ti+1], andSi =

{(λ, a)}. From (55), (56), (84), and Lemma 3, we have that

Si ⊆ Sai :=

{
(
1, 
2) ∈ Θ : 
2 =

Hn,2(μi+1, ti+1)

Qn,3(μi+1, ti+1)

− 
1
Qn,2(μi+1, ti+1)

Qn,3(μi+1, ti+1)
, n ∈ N∗

}
. (85)

We next prove by contradiction thatSi = {(λ, a)}. Suppose that
on the contrary Si �= {(λ, a)}, i.e., Si defined by (84) is not a
singleton, which implies the set Sai defined by (85) are not
singletons (because Sai being a singleton implies that Si is a
singleton). It follows that there exist constants r̄ ∈ R such that

Qn,2(μi+1, ti+1)

Qn,3(μi+1, ti+1)
= r̄, n ∈ N∗ (86)

because if there were two different indices k1, k2 ∈ N∗ with
Qk1,2(μi+1,ti+1)

Qk1,3(μi+1,ti+1)
�= Qk2,2(μi+1,ti+1)

Qk2,3(μi+1,ti+1)
, then the set Sai defined by

(85) would be a singleton.
Moreover, since Si is not a singleton, the definition (84)

implies

Qn,2(μi+1, ti+1)
2 = Qn,1(μi+1, ti+1)Qn,3(μi+1, ti+1) (87)

for all n ∈ N∗ by recalling (56). According to (59)–(61), and
the fact that the Cauchy–Schwarz inequality holds as equality
only when two functions are linearly dependent, we obtain the
existence of constants μ̌n such that

gn,1(t, μi+1) = μ̌ngn,2(t, μi+1), n ∈ N∗ (88)

for t ∈ [μi+1, ti+1] (gn,2(t, μi+1) are not identically zero on
t ∈ [μi+1, ti+1] because ζ(t) is not identically zero).

Recalling (86), we obtain from (59)–(61) and (88) that

gn,1(t, μi+1) = μgn,2(t, μi+1), μ �= 0, n ∈ N∗ (89)

for t ∈ [μi+1, ti+1]. The reason of the constant μ �= 0 is given as
follows. According to Lemma 3, there exists n1 ∈ N∗ such that
Qn1,1(μi+1, ti+1) �= 0. Hence, gn1,1(t, μi+1) is not identically
zero on [μi+1, ti+1].

Equation (89) holding is a necessary condition of the hypothe-
sis thatSi is not a singleton. Recalling (51), (52), and Proposition
1, the fact that the (89) holds implies∫ 1

0

sin(xπn)u(x, t)dx+
1

b
μεπnζ(t) = 0 (90)

for all n ∈ N∗, t ∈ (μi+1, ti+1), and x ∈ [0, 1]. Taking the time
derivative of (90), and recalling (1) and (2), we have that∫ 1

0

sin(xπn)(εuxx(x, t) + λu(x, t))dx

+
1

b
μεπn(aζ(t) + bu(0, t))

= −(−1)nπnεu(1, t) + πnεu(0, t)

−
∫ 1

0

π2n2 sin(xπn)εu(x, t)dx

+

∫ 1

0

sin(xπn)λu(x, t)dx+
1

b
μεπnaζ(t) + μεπnu(0, t)

= −(−1)nπnεu(1, t) + n(πε+ μεπ)u(0, t)
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− 1

b
μεπn(λ − a− π2n2ε)ζ(t)

= −(−1)nπεu(1, t) + (πε+ μεπ)u(0, t)

− 1

b
μεπ(λ − a− π2n2ε)ζ(t) = 0 (91)

for all n ∈ N∗ and t ∈ (μi+1, ti+1), where (90) is applied in
going from the second equation to the third one in (91). Con-
sidering any two odd (or even) positive integers n1 �= n2, we
obtain from (91) that (n21 − n22)ζ(t) = 0 for t ∈ (μi+1, ti+1).
Considering the fact that ζ ∈ C0([ti, ti+1];R) and ζ(t) is not
identically zero on t ∈ [ti, ti+1], one obtains n21 = n22: con-
tradiction. Consequently, Si is a singleton, i.e., Si = {(λ, a)}.
Therefore, λ̂(ti+1) = λ, â(ti+1) = a. �

From Claims 1–4, we obtain Lemma 4. �
Lemma 5: If λ̂(ti) = λ (or â(ti) = a) for certain i ∈ N, then

λ̂(t) = λ (or â(t) = a) for all t ∈ [ti,+∞).
Proof: According to Lemma 4, we have that λ̂(ti+1) is

equal to either λ or λ̂(ti). Therefore, if λ̂(ti) = λ, then
λ̂(ti+1) = λ. Repeating the above process, then λ̂(t) = λ for
all t ∈ [ti, limk→∞(tk)). Recalling Lemma 2 which implies
limk→∞(tk) → ∞, we thus have λ̂(t) = λ for t ∈ [ti,∞). The
same is true of â. The proof is complete. �

Lemma 6: If u[0] = 0, ζ(0) �= 0, and the user-selected initial
estimates θ̂(0) = [̂λ(0), â(0)]T happen to make K2(1; θ̂(0)) =

K2(1; θ̂(t1)) = 0, the situation (i.e., K2(1; θ̂(0)) =

K2(1; θ̂(t1)) = 0) is avoided just by changing λ̂(0) as another
value (arbitrary) in [λ, λ].

Proof: Because the kernels h and γ in K2 (34) only in-
clude the unknown parameter: a, considering â(t1) = a en-
sured by ζ(0) �= 0 with Lemma 4, and λ̂(t1) = λ̂(0) due to
the fact that u[t] is identically zero on t ∈ [0, t1] (which is
the result of K2(1; θ̂(0)) = 0 with (1)–(3), (36), (38), and
u[0] = 0), we have that K2(1; θ̂(t1)) = K2(1; λ̂(t1), â(t1)) =

K2(1; λ̂(0), a) = K2(1; θ) +
λ−λ̂(0)

2ε γ(1). Thus K2(1; θ̂(t1)) =

0 implies a unique λ̂(0) = λ + 2εK2(1;θ)
γ(1) that is a neces-

sary condition ofK2(1; θ̂(0)) = K2(1; θ̂(t1)) = 0 when u[0] =
0, ζ(0) �= 0. In other words, if the situation in this lemma ap-
pears, it means that λ̂(0) must be the one mentioned above.
Therefore, we only need to pick another λ̂(0), and then the
situation mentioned in this lemma is avoided. The proof of
Lemma 6 is complete. �

Remark 1: If u[0] = 0, ζ(0) �= 0, and K2(1; θ̂(0)) =

K2(1; θ̂(t1)) = 0 is found under the user-selected initial
estimates θ̂(0) = [̂λ(0), â(0)]T , then λ̂(0) should be changed as
another value (arbitrary) in [λ, λ].

According to Lemma 6, the purpose of Remark 1 is to avoid
the appearance of an extreme case that u[0] = 0, ζ(0) �= 0,
K2(1; θ̂(0)) = K2(1; θ̂(t1)) = 0, which implies K2(1; θ̂(t)) =

K2(1; θ̂(t1)) = K2(1; λ̂(0), a) = 0 for t ≥ t1, and leads to that
the regulation on the ODE dynamics (1) is lost, i.e., u[t] ≡ 0
for all time while ζ(t) dynamics may be unstable, according to
(1)–(3), (36), and (38).

Let θ̂(0) belong to Θ1 which is equal to Θ together with
Remark 1, we obtain the following parameter convergence
property.

Relaying on the above four lemmas, we are now to show the
convergence of the parameter estimates.

Lemma 7: For all u[0] ∈ L2(0, 1), ζ(0) ∈ R except for the
case that both u[0] and ζ(0) are zero, with θ̂(0) ∈ Θ1, we have

θ̂(t) = θ (92)

for all t ≥ t2, where θ̂(t) = [̂λ(t), â(t)]T and θ = [λ, a]T .
Proof: Case 1: u(x, 0) is not identically zero for x ∈ [0, 1],

and ζ(0) is not zero. We know that u[t], ζ(t) are not identically
zero on t ∈ [0, t1]. Recalling Lemmas 4 and 5, we obtain (92).

Case 2: u[0] = 0 and ζ(0) �= 0.
We know that ζ(t) is not identically zero on t ∈ [0, t1].

If K2(1; λ̂(0), â(0)) �= 0, we have that u[t] is not identi-
cally zero on t ∈ [0, t1] according to (1)–(3), (36), and (38).
Then, it is straightforward to obtain (92) with recalling
Lemmas 4 and 5.

If K2(1; λ̂(0), â(0)) = 0, then u[t] = 0 on t ∈ [0, t1] ac-
cording to (1)–(3), (36), (38), and u[0] = 0. It follows that
ζ(t) = ζ(0)eat in (1), which is not zero on t ∈ [0, t1] un-
der ζ(0) �= 0. Recalling Lemma 6 and Remark 1, we have
K2(1; θ̂(t1)) �= 0, which results in that u[t] is not identically
zero on t ∈ [t1, t2] considering (1)–(3), (36), (38), and the fact
that ζ(t1) = ζ(0)eat1 is not zero. Therefore, we obtain (92) from
Lemmas 4 and 5.

Case 3: u(x, 0) is not identically zero, and ζ(0) = 0.
It is obvious that u[t] is not identically zero on t ∈ [0, t1].

Supposing that ζ[t] is identically zero on t ∈ [0, t1], it follows
from (1) that u(0, t) = 0 on t ∈ [0, t1]. Applying the method of
separation of variables shown in [32, (3.4)–(3.10)], it implies
from (2), (3), and u(0, t) = 0 that u[t] is identically zero on
t ∈ [0, t1]: contradiction. Therefore, ζ[t] is also not identically
zero on t ∈ [0, t1]. We thus obtain (92) from Lemmas 4 and 5.

The proof of this lemma is complete. �
Lemma 7 implies that the exact parameter identification of

the two unknown parameters can be achieved by at most two
updates of the designed identifier, under all initial conditions of
plant states except for a set of measure zero. Because of

t2 ≤ 2T (93)

which is ensured by (42) we have that the maximum convergence
time of the parameter estimates is 2T , where T > 0 is a design
parameter.

When all plant initial conditions are zero, the convergence of
parameter estimates is shown as the following lemma.

Lemma 8: If u[0] = 0, ζ(0) = 0, the parameter estimates are
kept as the initial values, i.e., θ̂(t) ≡ θ̂(0) for t ∈ [0,∞).

Proof: It is straightforwardly obtained (step by step) from
Lemma 4 that θ̂(t) ≡ θ̂(0) for t ∈ [0, limi→∞ ti). Recall-
ing Lemma 2 that implies limi→∞ ti = +∞, the proof is
complete. �

Based on Lemmas 7 and 8 showing the convergence of the
parameter estimates under different initial conditions u[0], ζ(0),
next we prove the last two portions of Theorem 1 by using
Lyapunov analysis.

C. Exponential Regulation of the Plant States

1) Now We Prove the Second Portion of Theorem 1:
Define a Lyapunov function as

V (t) =
1

2
ra

∫ 1

0

β(x, t)2dx+
1

2
rcζ(t)

2 −m(t) (94)
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where m(t) is defined in (43). Defining

Ω̄(t) = ‖β[t]‖2 + ζ(t)2 + |m(t)| (95)

we have

ξ3Ω̄(t) ≤ V (t) ≤ ξ4Ω̄(t) (96)

where

ξ3 = min

{
1

2
ra,

1

2
rc, 1

}
> 0, ξ4 = max

{
1

2
ra,

1

2
rc, 1

}
> 0.

According to (68) and the nominal control design in Section III,
in the triggered control system, the right boundary condition of
the target system (23)–(26) becomes

βx(1, t) + rβ(1, t) = −p(t)− d(t). (97)

Recalling the regularity of the solution in Proposition 1 and the
transformations (6), (14), (22), for t ∈ (ti, ti+1), i ∈ N, taking
the derivative of (94) along (23)–(25), (97), and (43), applying
integration by parts, we have that

V̇ (t) = ra

∫ 1

0

β(x, t)βt(x, t)dx+ rcζ(t)ζ̇(t)− ṁ(t)

= raεβ(1, t)(−rβ(1, t)− p(t)− d(t))

− raε

∫ 1

0

βx(x, t)
2dx− amrcζ(t)

2 + rcζ(t)bβ(0, t)

+ ηm(t)− λdd(t)
2 + κ1u(1, t)

2 + κ2u(0, t)
2

+ κ3‖u(·, t)‖2 + κ4ζ(t)
2, t ∈ (ti, ti+1). (98)

Recalling (12), (14), and (35), we have

u(x, t) = β(x, t)−
∫ x

0

hI(x, y)β(y, t)dy + γ(x)ζ(t)

+

∫ x

0

Φ(x, y)

(
β(y, t)−

∫ y

0

hI(y, z)

× β(z, t)dz+γ(y)ζ(t)

)
dy

= β(x, t) +

∫ x

0

P (x, y)β(y, t)dy + Γ(x)ζ(t) (99)

where

P (x, y) = −
∫ x

y

Φ(x, z)hI(z, y)dz − hI(x, y) + Φ(x, y)

Γ(x) = γ(x) +

∫ x

0

Φ(x, y)γ(y)dy.

Applying the Cauchy–Schwarz inequality, we obtain

u(0, t)2 ≤ m1(β(0, t)
2 + ζ(t)2) (100)

u(1, t)2 ≤ m2(β(1, t)
2 + ζ(t)2 + ‖β[t]‖2) (101)

‖u[t]‖2 ≤ m3(ζ(t)
2 + ‖β[t]‖2) (102)

where

m1 = 2max

{
1,max

ϑ∈Θ
{Γ(0;ϑ)2}

}
> 0

m2 = 3max
ϑ∈Θ

{
1,

∫ 1

0

P (1, y;ϑ)2dy,Γ(1;ϑ)2
}
> 0

m3 = 2max
ϑ∈Θ

{(
1 +

(∫ 1

0

∫ x

0

P (x, y;ϑ)2dydx

) 1
2

)2

,

∫ 1

0

Γ(x;ϑ)2dx

}
> 0.

From Poincare inequality, we have that

−‖βx[t]‖2 ≤ 1

2
β(1, t)2 − 1

4
‖β[t]‖2. (103)

From Agmon’s and Young’s inequalities, we have that

β(0, t)2 ≤ β(1, t)2 + ‖β[t]‖2 + ‖βx[t]‖2. (104)

Applying Young’s inequality and the Cauchy–Schwarz inequal-
ity into (98), with using (100)–(102), (103), and (104), we have
that

V̇ (t) ≤ − rraεβ(1, t)
2 − raεβ(1, t)p(t)− raεβ(1, t)d(t)

− 1

8
raε

∫ 1

0

β(x, t)2dx+
1

4
raεβ(1, t)

2

− 1

2
raε

∫ 1

0

βx(x, t)
2dx− 3

4
amrcζ(t)

2+
rc
am

b2β(0, t)2

+ ηm(t)− λdd(t)
2 + κ1m2β(1, t)

2 + κ2m1β(0, t)
2

+ (κ3m3 + κ1m2)‖β(·, t)‖2

+ (κ4 + κ2m1 + κ1m2 + κ3m3)ζ(t)
2

≤ −
[(

r − 1

4

)
raε− raε

4r1
− raε

4r2
− rc
am

b2

− κ1m2 − κ2m1

]
β(1, t)2

+ ηm(t)− (λd − r1raε)d(t)
2 + r2raεp(t)

2

−
(
3rc
4
am − κ1m2 − κ2m1 − κ3m3 − κ4

)
ζ(t)2

−
(
1

2
raε− rc

am
b2 − κ2m1

)
‖βx[t]‖2

−
(
1

8
raε− rc

am
b2−κ1m2−κ2m1−κ3m3

)
‖β[t]‖2

for t ∈ (ti, ti+1). Choosing

min{r1, r2} ≥ 1

q − λ
2ε − 1

4

≥ 1

r − 1
4

(105)

rc >
8(κ1m2 + κ2m1 + κ3m3 + κ4)

3am
(106)

ra ≥ max

{
2( rc

am
b2 + κ1m2 + κ2m1)

(q − λ
2ε − 1

4 )ε
,
2

ε

(
rc
am

b2 + κ2m1

)

16( rc
am
b2 + κ1m2 + κ2m1 + κ3m3)

ε

}
(107)

λd ≥ r1raε (108)
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where r = q − λ
2ε in (27) and Assumption 2, which ensures r ≥

q − λ
2ε >

1
4 are recalled, we obtain

V̇ ≤ − 1

16
raε‖β[t]‖2 − 3rc

8
amζ(t)

2

+ ηm(t) + r2raεp(t)
2. (109)

That is,

V̇ ≤ −σV (t) + r2raεp(t)
2 (110)

for t ∈ (ti, ti+1), i ∈ N, where

σ = min

{
1

8
ε,

3

4
am, η

}
.

Claim 5: After t = t2, p(t) defined in (41) is identically zero,
i.e.,

p(t) ≡ 0, t ∈ [t2,∞). (111)

Proof: 1) Ifu[0] and ζ(0) are zero, it follows thatu[t] and ζ(t)
are identically zero for t ∈ [0,∞) considering (1)–(3), (36), and
(38). Thus, (111) holds.

2) Others: Recalling (41) and Lemma 7, we obtain (111).
The proof of Claim 5 is complete. �
Multiplying both sides of (110) by eσt, integrating both sides

of (110) from ti to t with t ∈ (ti, ti+1), i ≥ 2, considering
Claim 5, we obtain that

V (t) ≤ V (ti)e
−σ(t−ti), t ∈ (ti, ti+1), i ≥ 2. (112)

Recalling Corollary 1, we know that V (t) defined in (94) is con-
tinuous. We then have V (t−i+1) = V (ti+1) and V (t+i ) = V (ti),
and thus, we can replace (ti, ti+1) by [ti, ti+1] in (112), yielding

V (ti+1) ≤ V (ti)e
−σ(ti+1−ti) (113)

for i ≥ 2.
Hence, applying (113) repeatedly, we obtain from (112) that

V (t) ≤ V (t2)

i−1∏
c=2

e−σ(tc+1−tc)e−σ(t−ti)

= V (t2)e
−σ(t−t2) (114)

for any t ∈ [ti, ti+1], i ≥ 3. Together with (112) holding for t ∈
[t2, t3], we obtain

V (t) ≤ V (t2)e
−σ(t−t2) (115)

for t ≥ t2.
In the following claim, we analyze the responses on t ∈ [0, t2].
Claim 6: For the finite time t2 in Claim 5, the following

estimate holds:

V (t) ≤ V (0)eσ̄t, t ∈ [0, t2] (116)

where

σ̄ =
1

ξ3
max{r2raεΥp, 1} −min

{
1

8
ε,

3

4
am, η + 1

}
(117)

for some positive Υp that depends on the initial parameter
estimates λ̂(0) and â(0) and its true values λ and a.

Proof: Bounding p(t)2 defined in (41) on t ∈ [0, t2] as

p(t)2 ≤ Ῡp(‖u[t]‖2 + ζ(t)2)

with

Ῡp = 2max

{∫ 1

0

(K1(1, y; λ, a)−K1(1, y; λ̂, â))
2dy,

(K2(1; λ, a)−K2(1; λ̂, â))
2

}
(118)

where λ̂ is equal to λ̂(0) or λ, â is equal to â(0) or a, because only
λ̂(0), â(0) and λ̂(t1), â(t1) are used here, with recalling Lemma
4 that implies that λ̂(t1) = λ or λ̂(t1) = λ̂(0) and â(t1) = a or
â(t1) = â(0). Recalling (102), we obtain

p(t)2 ≤ Υp(‖β[t]‖2 + ζ(t)2), t ∈ [0, t2] (119)

where the positive constant Υp is

Υp = Ῡp(m3 + 1). (120)

For 0 ≤ i < 2, we have from (109) and (119) that

V̇ (t) ≤ − 1

16
raε‖β[t]‖2 − 3rc

8
amζ(t)

2 + ηm(t) +m(t)

−m(t) + r2raεΥp(‖β[t]‖2 + ζ(t)2) ≤ σ̄V (t)

for t ∈ (ti, ti+1), where σ̄ is given in (117). We then have

V (t) ≤ V (ti)e
σ̄(t−ti) (121)

for t ∈ (ti, ti+1), 0 ≤ i < 2. Recalling again the continuity of
V (t), and thus, we can replace (ti, ti+1) by [ti, ti+1] in (121).

Then, we have

V (t1) ≤ V (0)eσ̄t1 . (122)

Recalling (121) and applying (122), we have that

V (t) ≤ V (0)eσ̄t1eσ̄(t−t1) = V (0)eσ̄t

for any t ∈ [t1, t2]. It is obtained from (121) that V (t) ≤
V (0)eσ̄t also holds for t ∈ [0, t1]. Therefore, (116) holds.

The proof of Claim 6 is complete. �
We obtain from Claim 6 that

V (t2) ≤ V (0)eσ̄t2 . (123)

By virtue of (115), (116), and (123), we have V (t) ≤
V (0)e(σ̄+max{σ,−σ̄})t2e−σt ≤ V (0)e2T (σ̄+max{σ,−σ̄})e−σt for
t ∈ [0,∞), where (93) is recalled. Recalling (96), we have

Ω̄(t) ≤ Υ1Ω̄(0)e
−σt, t ≥ 0 (124)

where the positive constant Υ1 is

Υ1 =
ξ4
ξ3
e2T (σ̄+max{σ,−σ̄}) (125)

which depends on the initial parameter estimates λ̂(0) and â(0)
recalling (117), (118), and (120).

From (5), (37), and Lemma 7, we know that θ̃(t) =

0∀t ≥ t2, and |θ̃(t)| ≤ |θ̃(0)| ∀t ∈ [0, t2], which is ensured by
Lemma 4. Recalling (93), the following estimate holds: |θ̃(t)| ≤
e2σT |θ̃(0)|e−σt. Therefore, together with (124), we have that(

Ω̄(t) +
∣∣∣θ̃(t)∣∣∣) ≤ Υ

(
Ω̄(0) +

∣∣∣θ̃(0)∣∣∣) e−σt (126)

where

Υ = max{Υ1, e
2σT }.
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Fig. 3. Evolution of u(x, t) in an open loop.

Fig. 4. Evolution of ζ(t) in an open loop.

Fig. 5. Evolution of u(x, t) under the control input Ud(t) defined in
(36).

Fig. 6. Evolution of ζ(t) under the control input Ud(t) defined in (36).

Fig. 7. Piecewise-constant control input Ud(t) (36) and the
continuous-in-state control signal Uc(t) (39) used in ETM.

Fig. 8. Evolution of the parameter estimates.

Fig. 9. Evolution of (d(t)2)0.2 and (−ξm(t))0.2.

Fig. 10. Density of the inter-execution times computed for 100 different
initial conditions given by u(x, 0) = x2 sin(n̄πx), ζ(0) = 0.2, and n̄ =
1, 2, . . . , 100.

Applying the invertibility of the transformations (6), (14), and
(22), we thus obtain (64).

2) Now We Prove the Last Portion of Theorem 1: It fol-
lows from (1)–(3), (36), (38), and u[0] = 0, ζ(0) = 0 that u[t] ≡
0 and ζ(t) ≡ 0 for t ∈ [0,∞). Recalling (40) and (43), we know
m(t) = m(0)e−ηt, i.e., |m(t)| ≤ |m(0)|, for t ∈ [0,∞). Also, it
is obtained from Lemma 8 that θ̃(t) ≡ θ − θ̂(0) for t ∈ [0,∞).
Therefore, (65) is obtained.

The proof of Theorem 1 is complete.

VI. SIMULATION

A. Model

The simulation model is (1)–(4) with the following param-
eters: a = 1.5, b = 1, ε = 1, λ = 3, and q = 5. The bounds
λ, λ, a, and a of the unknown parameters λ and a are set as
0, 5, 0, and 3, respectively. Initial conditions are defined as

u(x, 0) = x2 sin(2πx), ζ(0) = 5. (127)

In the numerical calculation by the finite difference method, the
model is discretized with the time step of 0.004 and the space
step of 0.05.
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B. Design Parameters

The design parameters are chosen as ξ = 1.1, Ñ = 5, T =
1.2, η = 15, κ = 16, κ1 = κ2 = κ3 = κ4 = 100, λd = 20, and
n in (62) is truncated at 15 and the initial condition of m(t) is
set asm(0) = −500. The function of free design parameters Ñ ,
T , η, ξ, and m(0) in adjusting the response of the closed-loop
system is illustrated as follows. A larger m(0) can reduce the
triggering times at the initial stage, which allows more data
being collected for least-squares parameter identification. Even
though a larger overshoot of the plant norms may appear due
to the large m(0), the increase of η can fasten the convergence
of m(t) to zero, together with the decrease of ξ, which can
make the plant states resampled more frequently, especially
after the parameter estimates reaching the true values (which
can always be achieved in initial several updates), and thus
increase the decay rate of the plant states. Besides, as mentioned,
when we introduce the design parameters Ñ , T , the increase
of Ñ allows the data in more time intervals to be used in
parameter identification, which can improve the accuracy and
robustness of the identifier, andT is chosen to avoid less frequent
updates of parameter estimates considering the operation time is
only 4 s.

C. Gain Kernels

The kernels λ(x), Ψ(x, y) are directly obtained from (15) and
(7) (using the modified Bessel function given in [32, (A.10)]
with n = 1 and cutting off m in [32, (A.10)] at 15), where
the unknown coefficients are replaced by the piecewise-constant
estimates. The approximate solution h(x, y) of (28)–(31) where
the unknown coefficients are replaced by the piecewise-constant
estimates is obtained by the finite difference method on a lower
triangular domain discretized as a grid with the uniformed inter-
val of 0.05 (the spatial variablesx andywere discretized using 21
grid points each). The value at each grid point is denoted as hi,j ,
1 ≤ j ≤ i ≤ 21, i, j ∈ 1, 2, . . . , 21. According to (31), we know
h1,1 = 0. Together with (30), we havehi,i = 0, i = 1, 2, . . . , 21.
Then,h2,1 can be solved via (28). For representing the two-order
derivatives in (29) by the finite difference scheme, we adopt the
following approximate hi,i−1 = h2,1, i = 2, . . . , 21. The kernel
hwill be recomputed when the parameter estimates are changed
in the evolution. In the simulation results, which will be shown
later, we know that h is recomputed twice, according to the
parameter estimates λ̂ and â.

D. Simulation Results

The open-loop response of the ODE state ζ(t) and PDE state
u(x, t) are shown in Figs. 3 and 4, from which we observe that
the plant is unstable. Applying the proposed adaptive event-
triggered controllerUd defined in (36), it is shown in Figs. 5 and
6 that the ODE state ζ(t) and PDE state u(x, t) are convergent
to zero. The piecewise-constant control input Ud(t) defined in
(36) and the continuous-in-state control signal Uc(t) (39) used
in ETM are shown in Fig. 7. For the control input Ud(t), the
estimate θ̂ is recomputed and the states u and ζ are resampled
simultaneously, the total number of triggering times is 26, the
minimal dwell-time is 0.0404 s, which is much larger than the
highly conservative minimal dwell-time estimate (whose order
of magnitude is 10−6 s) obtained from (81) and (82) in Lemma 2.

There are two “jumps” in the continuous-in-state control signal
Uc(t) (39) at the first two triggering times, because of the updates
in the parameter estimates, which are shown in Fig. 8, where the
estimates reach the true values after two triggering times (the
exact estimates are not obtained at the time of the first event
under the nonzero initial condition (127) as Lemmas 4 and 5
imply, because of the approximation adopted in the simulation,
including the discretization of time and space, and truncation of
n = 1, 2, . . . in the estimator (62)).

Fig. 9 shows the time evolution of the functions in the trig-
gering condition (42) and the execution times, where an event is
generated, the control value is updated and d(t) is reset to zero,
when the trajectory d(t)2 reaches the trajectory −ξm(t).

Finally, we run simulations for 100 different initial conditions
and compute the inter-execution times between two triggering
times. The density of the inter-execution times is shown in
Fig. 10, from which we know that the prominent inter-execution
times are around 0.1 s when η = 15, and increase to around 0.2 s
when η decreases to 1.

VII. CONCLUSION

In this article, we have proposed an adaptive event-triggered
boundary control scheme for a parabolic PDE–ODE system,
where the reaction coefficient of the parabolic PDE, and the
system parameter of the ODE are unknown, and both of the pa-
rameter estimates and control input employ piecewise-constant
values. The controller includes an ETM to determine the syn-
chronous update times of both the BaLSI and plant states in
the control law. We have proved that the proposed control
guarantees that 1) no Zeno phenomenon occurs; 2) parameter
estimates are convergent to the true values in finite time under
most initial conditions of the plant (all initial conditions of
the plant except for a set of measure zero); and 3) the plant
states are exponentially regulated to zero. The effectiveness of
the proposed design is verified by a numerical example. In the
future work, the state-feedback control design will be extended
to the output-feedback type conforming to available sensors in
practice.

APPENDIX

A. Calculating Conditions of γ(x)

Inserting (14) into (16), recalling (8) and (20), we have

ζ̇(t) + amζ(t)− bw(0, t) + bγ(0)ζ(t)

= ζ̇(t)− aζ(t)− bw(0, t) + (bκ+ bγ(0))ζ(t)

= (bκ+ bγ(0))ζ(t) = 0. (128)

Inserting (14) into (17), recalling (9) and (16), we have

vt(x, t)− εvxx(x, t) + γ(x)bv(0, t)

= wt(x, t)− γ(x)ζ̇(t)− εwxx(x, t)

+ εγ′′(x)ζ(t) + γ(x)bv(0, t)

= γ(x)amζ(t)− γ(x)bv(0, t) + εγ′′(x)ζ(t) + γ(x)bv(0, t)

= (γ(x)am + εγ′′(x))ζ(t) = 0. (129)
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By virtue of (18) and (10), we have

vx(0, t) = wx(0, t)− γ′(0)ζ(t) = −γ′(0)ζ(t) = 0. (130)

According to (128)–(130), the conditions of γ(x) are obtained
as

εγ′′(x) + amγ(x) = 0 (131)

γ(0) = −κ (132)

γ′(0) = 0 (133)

which are satisfied by (15).

B. Calculating Conditions of h(x, y)

Inserting (22) into (24), using (17) and (18), applying inte-
gration by parts twice, we obtain

βt(x, t)− εβxx(x, t)

= vt(x, t)−
∫ x

0

h(x, y)vt(y, t)dy − εvxx(x, t)

+ ε

∫ x

0

hxx(x, y)v(y, t)dy + εhx(x, x)v(x, t)

+ εhx(x, x)v(x, t) + εhy(x, x)v(x, t) + εh(x, x)vx(x, t)

= − γ(x)bv(0, t)−
∫ x

0

h(x, y)εvxx(y, t)dy

+ b

∫ x

0

h(x, y)γ(y)dyv(0, t) + ε

∫ x

0

hxx(x, y)v(y, t)dy

+ 2εhx(x, x)v(x, t) + εhy(x, x)v(x, t) + εh(x, x)vx(x, t)

= − γ(x)bv(0, t)− h(x, x)εvx(x, t) + h(0, 0)εvx(0, t)

+ hy(x, x)εv(x, t)− hy(x, 0)εv(0, t)

−
∫ x

0

hyy(x, y)εv(y, t)dy + b

∫ x

0

h(x, y)γ(y)dyv(0, t)

+ ε

∫ x

0

hxx(x, y)v(y, t)dy + 2εhx(x, x)v(x, t)

+ εhy(x, x)v(x, t) + εh(x, x)vx(x, t)

= −
(
hy(x, 0)ε+ γ(x)b− b

∫ x

0

h(x, y)γ(y)dy

)
v(0, t)

+ (εh(x, x)− h(x, x)ε)vx(x, t)

+ 2ε(hy(x, x) + hx(x, x))v(x, t)

− ε

∫ x

0

(hyy(x, y)− hxx(x, y))v(y, t)dy = 0. (134)

By virtue of (25) and (18), we have

βx(0, t) = vx(0, t)− h(0, 0)v(0, t) = −h(0, 0)v(0, t) = 0.
(135)

According to (134) and (135), we obtain the conditions (28)–
(31).
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