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Delay-Adaptive Boundary Control of Coupled
Hyperbolic PDE-ODE Cascade Systems

Ji Wang , Member, IEEE, and Mamadou Diagne , Member, IEEE

Abstract—This article presents a delay-adaptive bound-
ary control scheme for a 2 × 2 coupled linear hyper-
bolic partial differential equation (PDE)-ordinary differen-
tial equation (ODE) cascade system with an unknown and
arbitrarily long input delay. To construct a nominal delay-
compensated control law, assuming a known input delay,
a three-step backstepping design is used. To build the
delay-adaptive boundary control law, the nominal control
action is fed with the estimate of the unknown delay, which
is generated from a batch least-squares identifier that is
updated by an event-triggering mechanism that evaluates
the growth of the norm of the system states. As a result
of the closed-loop system, the actuator and plant states
can be regulated exponentially while avoiding Zeno occur-
rences. The prescribed-time identification of the unknown
delay is also achieved. As far as we know, this is the first
delay-adaptive control result for systems governed by het-
erodirectional hyperbolic PDEs. The effectiveness of the
proposed design is demonstrated in the control application
of a deep-sea construction vessel with cable-payload oscil-
lations and subject to input delay.

Index Terms—Delay-adaptive control, event-triggered
control, hyperbolic partial differential equations (PDEs),
least-squares identifier.

I. INTRODUCTION

A. Boundary Control of Coupled Hyperbolic Partial
Differential Equations (PDEs)

SYSTEMS of transport PDEs appear in many physical mod-
els, including road traffic [26], [64], [65], water manage-

ment systems [20], [21], [45], [46], flow of fluids in oil drilling
systems [14], [27], [28], and cable vibration dynamics [53], [60].
As a result of the backstepping design [15], [52], the sliding
mode control approach [40] and the proportional–integral con-
troller design [51], the theoretical results on boundary control
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of coupled first-order linear hyperbolic PDEs have emerged in
the last decade. The backstepping design was further extended to
that of an+ 1 system in [44], and then to a more general coupled
transport PDE system where the number of PDEs in either
direction is arbitrary [30]. Along the same lines, studies on the
design of an adaptive estimation framework have been proposed
in [2] and [3], and extended to adaptive control in [6]. However,
the problem of delay-adaptive control for hyperbolic PDEs has
gone unanswered in all these last developments as traditional
designs based on swapping identifiers, passive identifiers, and
Lyapunov functions remain difficult to exploit for such systems.

B. Delay-Compensated Control of Finite- and
Infinite-Dimensional Plants

Time delays, which are well known to be detrimental to
stability [25], often exist in practical control systems. In or-
der to compensate for arbitrarily long delays, “avant-garde”
backstepping-based delay compensation techniques were first
developed in [35] and [37]. Bottom-line, the input delay is
converted into a transport PDE as an infinite-dimensional rep-
resentation of the actuator state. For ODE plants, a PDE/ODE
cascade system ensues from this substitute representation of the
actuator state. The method has also been used to compensate
for the effect of sensor delays that oftentimes occur in ODE
plants. In comparison to many results [1], [13], [24], which only
estimate plant states, the approach proposed in [35] and [37]
enables estimation of both the plant and the sensor states when
designing a feedback loop. A number of results considering
delays that are described by complex transport actuation paths
for nonlinear ODE plants were developed in [18] and [19], and
the references therein.

While compensation for arbitrarily long delays is commonly
available for finite-dimensional systems, only very few examples
for infinite-dimensional systems were presented, where one
pioneering result is [36] that is conceived using backstepping. In
recent years, researchers from the PDE control community have
shifted their attention to this topic, leading to many interesting
developments that can be found in [34], [41], [42], [48], and
[50]. By treating the delay as a transport PDE, [38] presented
the design of a boundary controller for a pure wave PDE with
compensation of an arbitrarily long input delay while ensuring
exponential stability for the closed-loop system. For coupled het-
erodirectional hyperbolic PDEs, in [54], a delay-compensated
control scheme was designed for a sandwich hyperbolic PDE
in the presence of a sensor delay of arbitrary length. In the
same spirit, Qi et al. [49] proposed a distributed input delay
compensation for traffic systems governed by coupled hyper-
bolic PDEs (see [47] as well). In addition to the continuous-in-
time control law, on the basis of the event-triggered boundary
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control design of PDEs [22], [23], [55], an event-triggered
delay-compensated boundary control law for coupled hyper-
bolic PDEs was presented in [57]. Although the above sub-
stantial results emblematize a major step in the field, the prior
knowledge of the delay length is a mandatory weakening factor
that mitigates their viability for many practical applications.

Lyapunov designs have been employed to develop delay-
adaptive controllers for linear and nonlinear ODE plants [9],
[11], [12], [39], [66], [67] via backstepping-based certainty-
equivalence compensators. The primary idea behind these con-
tributions is to estimate the unknown delay using input–output
signals, and then adjust a predesigned nominal controller based
on estimated parameters in order to achieve convergence. In
general, compared with the other traditional parameter iden-
tifier methods, such as swapping or passive identifiers, the
Lyapunov technique provides better transient performance prop-
erties. Recently, the approach has been extended to linear
reaction–diffusion PDEs with a boundary or a distributed de-
layed input [61], [62], where asymptotic convergence results are
achieved. In the realm of advancing the design approach of [61],
[62], a recent result has achieved the design of Lyapunov-based
delay-adaptive boundary control for a scalar integral PDE [63].
As far as we are aware, the three preceding contributions
are the sole results on delay-adaptive control for PDE plants.
The method in the present contribution is different with both
the above delay-adaptive control results and traditional adaptive
control designs for hyperbolic PDEs [6]. More precisely, our
design relies on a triggered batch least-square identifier (BaLSI),
a novel approach that was initially introduced in [31] and [32],
which has at least two significant advantages over the traditional
adaptive control approaches: guaranteeing exponential regula-
tion of the states to zero, as well as finite-time convergence of
the estimates to the true values. This method has been applied
in adaptive control of a parabolic PDE [33], and first-order
hyperbolic PDEs in [56], [58], and [59] with unknown plant
parameters.

C. Contributions

1) Different with the delay-robust stabilizing feedback con-
trol design for coupled first-order hyperbolic PDEs that
achieve robustness to small delays in actuation [8], the
present contribution ensures exact compensation of the
arbitrarily large unknown input delay.

2) Exact identification of the unknown delay before the
prescribed time is achieved. As a result, the exponential
regulation, instead of the asymptotic one in [61] and [62],
is guaranteed in the closed-loop system. Basically, after
the prescribed-time identification of the unknown param-
eter, the delay-adaptive control signal is identical to the
nominal control action (with known input delay), which
ultimately improves substantially the resulting transient
performance of the whole closed-loop system’s dynam-
ics.

3) To the best of the authors’ knowledge, our result is the first
delay-adaptive controller for coupled hyperbolic PDEs
involving an unknown and arbitrarily large input delay. In
the context of adaptive control of first-order hyperbolic
PDEs with unknown transport speeds, as compared with
the work in [4], [5], and [56], in our work the system

cascaded to the first-order hyperbolic PDE capturing ac-
tuation delay is a class of coupled hyperbolic PDEs-ODE
systems, which is much more complicated than [4], [5],
[56] where the cascaded system is a specific scalar ODE
or none, and moreover, the finite-time identification is
improved to the prescribed-time identification of the un-
known transport speed.

D. Organization

The rest of this article is organized as follows. The problem
formulation is shown in Section II. The nominal control design
is presented in Section III. The design of delay-adaptive control
with piecewise-constant parameter identification is proposed in
Section IV. The main result including the absence of a Zeno
phenomenon, parameter convergence, and exponential regula-
tion of the states is proved in Section V. The effectiveness of
the proposed design is illustrated with a numerical simulation
of a deep-sea construction vessel (DCV) in Section VI. Finally,
Section VII concludes this article.

E. Notations

We adopt the following notations.
1) The symbol Z+ denotes the set of natural numbers includ-

ing zero, and the notation N for the set {1, 2, · · · }, i.e., the
natural numbers without 0. We also use R+ := [0,+∞).

2) Let U ⊆ Rm be a set with nonempty interior and let
Ω ⊆ R be a set. By C0(U ; Ω), we denote the class of
continuous mappings on U , which takes values in Ω. By
Ck(U ; Ω), where k ≥ 1, we denote the class of contin-
uous functions on U , which have continuous derivatives
of order k on U and take values in Ω.

3) We use the notation L2(0, 1) for the standard space of the
equivalence class of square-integrable, measurable func-
tions defined on (0, 1) and ‖f‖ = (

∫ 1

0 f(x)2dx)
1
2 < +∞

for f ∈ L2(0, 1).
4) For an I ⊆ R+, the space C0(I;L2(0, 1)) is the space of

continuous mappings I � t �→ u[t] ∈ L2(0, 1).
5) Let u : R+ × [0, 1] → R be given. We use the notation

u[t] to denote the profile of u at certain t ≥ 0, i.e.,
(u[t])(x) = u(x, t), for all x ∈ [0, 1].

II. PROBLEM FORMULATION

Consider the potentially open-loop unstable plant governed
by the following 2 × 2 linear hyperbolic PDE coupled with a
linear ODE

Ẋ(t) = AX(t) +Bw(0, t) (1)

zt(x, t) = −q1zx(x, t) + d1z(x, t) + d2w(x, t) (2)

wt(x, t) = q2wx(x, t) + d3z(x, t) + d4w(x, t) (3)

with the boundary conditions

z(0, t) = CX(t)− pw(0, t) (4)

w(1, t) = c0U(t−D) + qz(1, t) (5)

where, q, q1, q2, d1, d2, d3, d4, c0, and p are arbitrary parameters
with q1, q2 > 0 being transport speeds, and p 
= 0, c0 
= 0. Here,
the matrix A,B, and C are known, z(x, t) and w(x, t) are the
PDE state variables, X(t) ∈ Rm is the linear ODE state, U is
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the control variable, and D > 0 is the indiscriminately large
and unknown input delay. We assume that the initial conditions
satisfy

z0(x), w0(x) ∈ L2(0, 1), X0 ∈ Rm (6)

and consider the following assumptions.
Assumption 1: The pair A,B is controllable.
Assumption 2: Parameters p, q satisfy

|pq|emax
{

2d4
q2

,
2d1
q1

}
<

1√
2
. (7)

Assumption 3: The bounds of the unknown input delay D are
known and arbitrary, i.e.,

0 < D ≤ D ≤ D (8)

where positive constants D and D are arbitrary.
Our goal is to design a delay-adaptive boundary control action,

U(t), that exponentially regulates the system (1)–(5) despite the
presence of an unknown delay D whose length is arbitrary. The
plant (1)–(5) can be used to model cable-payload oscillations
in DCV, which are to be suppressed for the purpose of accurate
placement of the equipment to be installed on the sea floor. From
this application perspective, large-distance signal transmission
in the water through a set of acoustics devices and the actuation
of the hydraulic actuator for the ship-mounted crane are subject
to delays, which are considered as an unknown delay in the
control input, the cable vibration dynamics are governed by the
2 × 2 hyperbolic PDE, and the vibration dynamics of the cage
are captured by the ODE system.

III. NOMINAL DELAY-COMPENSATED CONTROL DESIGN

In order to design the nominal control law, we first construct
an infinite-dimensional representation of the actuator state by
converting the delayed input into transport PDE actuation dy-
namics. Define a new variable v(x, t) as

v(x, t) =

{
U (t−Dx) if t−Dx ≥ 0

0 if t−Dx < 0.

Then, (5) is rewritten as

w(1, t) = c0v(1, t) + qz(1, t) (9)

vt(x, t) = − 1

D
vx(x, t) ∀x ∈ (0, 1) (10)

v(0, t) = U(t) (11)

v(x, 0) = 0 ∀x ∈ (0, 1], (12)

for t ∈ [0,∞). Now, resulting from the new representation of
the actuator state, the function U(t), which is defined as the
boundary condition (11) of the transport equation (10), is the
delay-free control input to be designed for the hyperbolic PDE-
PDE-ODE cascade system consisting of (1)–(4) combined with
(9)–(12).

A. First Step: Backstepping Transformation for the 2 × 2
Coupled Hyperbolic PDE-ODE

We introduce the following backstepping transformation [43]
in order to remove the in-domain coupling destabilizing terms
from the 2 × 2 hyperbolic PDE system consisting of (2) and (3),
and make the ODE system matrix Hurwitz

α(x, t) = z(x, t)−
∫ x

0

φ(x, y)z(y, t)dy

−
∫ x

0

ϕ(x, y)w(y, t)dy − γ(x)X(t) (13)

β(x, t) = w(x, t)−
∫ x

0

Ψ(x, y)z(y, t)dy

−
∫ x

0

Φ(x, y)w(y, t)dy − λ(x)X(t) (14)

whose inverse is

z(x, t) = α(x, t)−
∫ x

0

φ̄(x, y)α(y, t)dy

−
∫ x

0

ϕ̄(x, y)β(y, t)dy − γ̄(x)X(t) (15)

w(x, t) = β(x, t)−
∫ x

0

Ψ̄(x, y)α(y, t)dy

−
∫ x

0

Φ̄(x, y)β(y, t)dy − λ̄(x)X(t) (16)

to convert (1)–(4) and (9) into
Ẋ(t) = AmX(t) +Bβ(0, t) (17)

α(0, t) = − pβ(0, t) (18)

αt(x, t) = − q1αx(x, t) + d1α(x, t) (19)

βt(x, t) = q2βx(x, t) + d4β(x, t) (20)

β(1, t) = c0v(1, t) + qα(1, t) + (λ̄(1)− qγ̄(1))X(t)

+

∫ 1

0

(
Ψ̄(1, y)− qφ̄(1, y)

)
α(y, t)dy

+

∫ 1

0

(
Φ̄(1, y)− qϕ̄(1, y)

)
β(y, t)dy. (21)

The gain vector K is selected so that

Am = A+BKT (22)
is Hurwitz.

The conditions on the kernels φ(x, y),ϕ(x, y), γ(x),Ψ(x, y),
Φ(x, y), and λ(x), and φ̄(x, y), ϕ̄(x, y), γ̄(x), Ψ̄(x, y), Φ̄(x, y),
and λ̄(x) in the backstepping transformations (13)–(16), which
are obtained by matching the original system (1)–(5) and the
intermediate system (17)–(21), are shown in the part 1 of Ap-
pendix A, and the well-posedness of the kernel conditions has
been proved in [43, Th. 4.1].

B. Second Step: Transformation of the Actuator States

With the purpose of removing the integral terms and ODE
state X(t) from the PDE boundary condition (21), we define the
following change of coordinate:

u(x, t) = v(x, t) +

∫ 1

0

K1(x, y)α(y, t)dy

+

∫ 1

0

K2(x, y)β(y, t)dy + η(x)X(t) (23)

which enables one to map the actuator dynamics given by (10),
(11), and (21) into the following equations:

β(1, t) = c0u(1, t) + qα(1, t) (24)

ut(x, t) = − dux(x, t) + q2K2(x, 1)c0u(1, t) (25)

u(0, t) = U(t) +

∫ 1

0

K1(0, y)α(y, t)dy
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Fig. 1. Flow diagram of the nominal delay-compensated control design.

+

∫ 1

0

K2(0, y)β(y, t)dy + η(0)X(t) (26)

where

d =
1

D
.

The detailed computation and conditions of the kernels
K1(x, y),K2(x, y), η(x) are given in the part 2 of Appendix A.

C. Third Step: Backstepping Transformation for the
Resulting u-PDE

To remove the boundary nonlocal term q2K2(x, 1)c0u(1, t)
in the transport PDE (25), we apply the following mapping:

u(x, t) = û(x, t) +

∫ 1

x

R(x, y)û(y, t)dy (27)

which converts (24)–(26) into

β(1, t) = c0û(1, t) + qα(1, t) (28)

ût(x, t) = − dûx(x, t) (29)

û(0, t) = 0 (30)

with the nominal control input defined as

U(t)= −
∫ 1

0

K1(0, y;D)α(y, t)dy−
∫ 1

0

K2(0, y;D)β(y, t)dy

+

∫ 1

0

R(0, y;D)û(y, t)dy − η(0;D)X(t). (31)

The conditions of the kernel R(x, y) are shown in the part
3 of Appendix A. Writing D after “;” in (31) emphasizes the
fact that these functions are parameterized by the delay D. The
inverse transformation of (27) can be found as

û(x, t) = u(x, t) +

∫ 1

x

P (x, y)u(y, t)dy (32)

where the conditions of P (x, y) are given in the part 3 of
Appendix A as well.

D. Stability Result of Nominal Delay-Compensated
Control

The flow diagram of the nominal delay-compensated control
is shown in Fig. 1. In a nutshell, the prior transformations
convert the original system that consists of (1)–(4) and (9)–(12)
into the target system that consists of (17)–(20) and (28)–(30).
The nominal control input (31) is rewritten with respect to the
original state variables as follows:

U(t) =

∫ 1

0

M1(y;D)z(y, t)dy +

∫ 1

0

M2(y;D)w(y, t)dy

+

∫ 1

0

M3(y;D)v(y, t)dy +M4(D)X(t) (33)

where the controller gains Mi, i = 1, . . . , 4 are given in Ap-
pendix B, which includes the delay D.

The stability result of the nominal delay-compensated control
is stated as follows.

Theorem 1: For the known delayD, with arbitrary initial data
(z[0], w[0])T ∈ L2(0, 1), X(0) ∈ Rm, considering the closed-
loop system consisting of the plant (1)–(4), (9)–(12), and the
nominal controller (33), the exponential stability of the closed-
loop system is obtained in the sense that there exist positive
constants Υ, λ1 such that

Ω(t) ≤ ΥΩ(0)e−λ1t, t ≥ 0 (34)

where Ω(t) is defined as

Ω(t) = ‖z[t]‖2 + ‖w[t]‖2 + ‖v[t]‖2 + |X(t)|2. (35)

Proof: Define Lyapunov function V (t) as

V (t) =
rd
2
XT (t)P1X(t) +

ra
2

∫ 1

0

eδxβ(x, t)2dx

+
1

2

∫ 1

0

e−δxα(x, t)2dx+
rc
2

∫ 1

0

e−xû(x, t)2dx

(36)

where a positive definite matrix P1 = P1
T is the solution to

the Lyapunov equation AT
mP1 + P1Am = −Q1 for some Q1 =

Q1
T > 0, and where δ, ra, rc, rd satisfy

e
−2max

{
2d4
q2

,
2d1
q1

}
> e−2δ > 2p2q2 (37)

q1
2q2q2

e−2δ ≥ ra >
p2q1
q2

(38)

rc ≥ 2D̄q2rae
δc20 (39)

0 < rd ≤ λmin(Q1)

2|P1B|2
(
q2ra − p2q1

)
. (40)

Please note that e−2max{ 2d4
q2

,
2d1
q1

} > 2p2q2 holds in (37) under
Assumption 2, and q1

2q2q2
e−2δ > p2q1

q2
holds in (38) due to the

right inequality in (37), which means the existence of δ, ra
satisfying (37) and (38). It is then straightforward to obtain rc, rd
by (39) and (40), where the positiveness of the right-hand side of
(40) is ensured by the right inequality in (38). Therefore, there
exists a solution δ, ra, rc, and rd satisfying (37)–(40).

According to Appendix D where the relationship (161) be-
tween the norms of states in the original and target systems is
obtained, we have

ξ1ξ3Ω(t) ≤ V (t) ≤ ξ2ξ4Ω(t) (41)
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where ξ1 and ξ2 are given in (162) and (163) in Appendix D,
and

ξ3 =
1

2
min

{
rdλmin(P1), ra, e

−δ, rce
−1
}

(42)

ξ4 =
1

2
max

{
rdλmax(P1), rae

δ, 1, rc
}

(43)

where λmin(P1) is the smallest eigenvalue of P1.
Taking the derivative of (36) along (17)–(20) and (28)–(30),

and applying the Young’s inequality and the Cauchy–Schwarz
inequality, the following estimate holds for all t ≥ 0:

V̇ (t) ≤ − rd
4

λmin(Q1)|X(t)|2

−
(
1

2
q1e

−δ − q2rae
δq2

)
α(1, t)2

−
(
1

2
q2ra − rd|P1B|2

λmin(Q1)
− p2q1

2

)
β(0, t)2

− ra

(
1

2
δq2 − d4

)∫ 1

0

eδxβ(x, t)2dx

−
(
1

2
δq1 − d1

)∫ 1

0

e−δxα(x, t)2dx

−
( rc
2D

− q2rae
δc20

)
û(1, t)2

− rc
2D

∫ 1

0

exû(x, t)2dx. (44)

Recalling conditions (37)–(39) on δ, ra, rc, and rd, there exists
a sufficiently small positive constant λ1, such that

V̇ (t) ≤ −λ1V (t) (45)

where

λ1 = min

{
λmin(Q1)

2λmax(P1)
, δq2 − 2d4, δq1 − 2d1,

1

D

}
> 0.

(46)
Recalling (41), we then obtain (34) where the positive constant
Υ is given as

Υ =
ξ2ξ4
ξ1ξ3

. (47)

The proof of the theorem is complete. �
Next, we will design a delay-adaptive controller considering

the nominal control action (33) fed with an estimate D̂ that is
given by an update law resulting from a triggered BaLSI of the
unknown delay D.

IV. DELAY-ADAPTIVE CONTROL DESIGN

Before presenting the controller, we propose the design of a
triggered batch least-squares identifier for the unknown delay,
in the following two sections.

A. Triggering Mechanism

The triggering mechanism for the batch least-squares identi-
fier is defined as

ti+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
min

{
inf

{
t > ti : Ω(t) = (1 + a)Υ̂(D̂(ti))Ω(ti)

}
,

ti + T

}
, for Ω(ti) 
= 0

ti + T, for Ω(ti) = 0

(48)

where the positive design parameter a is free, another positive
design parameter

T ≤ Tf

2
(49)

is the maximum dwell time between two adjacent triggering time
instants, and the free design parameter Tf > 0 is the prescribed
time of identifying the unknown delay. The function Ω(t) is
given in (35). The function Υ̂(D̂(ti)) ≥ 1 is the overshoot
coefficient that is associated with the system transient and is
obtained by replacing the unknown D with D̂(ti) in Υ which is
defined in (47) [note that ξ1 and ξ2 in (47) depend on the delayD
through the delay-dependent kernel functions K1,K2, η, R, P
included in (162) and (163) in Appendix D. See Appendix D for
further details].

B. Least-Squares Identifier for the Unknown Delay

Now, we design the identifier which stands as the update law
of the estimated delay D̂. According to (10), for τ > 0 and n =
1, 2, · · · , the following equality holds:

D
d

dτ

∫ 1

0

sin(xπn)v(x, τ)dx = πn

∫ 1

0

cos(xπn)v(x, τ)dx.

(50)
Integrating (50) from 0 to t, yields

D

∫ 1

0

sin(xπn)v(x, t)dx = πn

∫ t

0

∫ 1

0

cos(xπn)v(x, τ)dxdτ

(51)
where (12) has been recalled. Straightforwardly, (51) can be
written as

fn(t) = Dgn(t) (52)

where

fn(t) = πn

∫ t

0

∫ 1

0

cos(xπn)v(x, τ)dxdτ (53)

gn(t) =

∫ 1

0

sin(xπn)v(x, t)dx (54)

for n ∈ N. Define the function hi,n by the formula

hi,n(�) =

∫ ti+1

μi+1

(fn(t)− �gn(t))
2dt, i ∈ Z+, n ∈ N (55)

and time instant μi+1 as

μi+1 := min{tg : g ∈ {0, . . . , i}, tg ≥ ti+1 − ÑT} (56)

where the positive integer Ñ ≥ 1 is a free design parameter
(in practice, a lager Ñ means a bigger set of data used in the
least-squares identifier, which makes the identifier more robust
with respect to measurement errors), and where the positive
constant T is the maximum dwell time according to (48). From
(52), one can deduce that the function hi,n(�) in (55) has a
global minimum hi,n(D) = 0. Then, using Fermat’s theorem
(vanishing gradient at extrema), the following matrix equation
hold for every i ∈ Z+ and n ∈ N:

Hn(μi+1, ti+1) = Gn(μi+1, ti+1)D (57)

where

Hn(μi+1, ti+1) =

∫ ti+1

μi+1

gn(t)fn(t)dt (58)

Gn(μi+1, ti+1) =

∫ ti+1

μi+1

gn(t)
2dt. (59)
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Indeed, (57) is obtained by differentiating the functions
hi,n(�) defined by (55) with respect to �, and evaluating the
derivative (zero) at the global minimum � = D. Using (57)–(59),
the following delay identifier is constructed:

D̂(ti+1) = argmin
{|�− D̂(ti)|2 : D ≤ � ≤ D,

Hn(μi+1, ti+1) = Gn(μi+1, ti+1)�, n = 1, 2, · · ·}, i ∈ Z+.
(60)

Remark 1 (Implementation of the identifier): Implementa-
tion of the identifier begins with calculating Hn(μi+1, ti+1),
Gn(μi+1, ti+1) from n = 1, i = 0, i.e., H1(μ1, t1), G1(μ1, t1),
using (53), (54), (58), and (59). IfG1(μ1, t1) 
= 0, it implies that
� belongs to a singleton set, i.e., � = H1(μ1,t1)

G1(μ1,t1)
. It is followed

that the output of the identifer (60) at t1 is D̂(t1) =
H1(μ1,t1)
G1(μ1,t1)

.
If G1(μ1, t1) = 0, we continue to calculate H,G with n = 2,
i = 0, i.e.,H2(μ1, t1),G2(μ1, t1), and then evaluate the value of
G2(μ1, t1). Similarly, if G2(μ1, t1) 
= 0, the output of the iden-
tifier at t1 is D̂(t1) =

H2(μ1,t1)
G2(μ1,t1)

. IfG2(μ1, t1) = 0, then move to
calculate the case of n = 3, i = 0, i.e., H3(μ1, t1), G3(μ1, t1).
Repeating the above steps, until we find a Gn(μ1, t1) 
= 0

for a certain n, the output of the identifier at t1 is D̂(t1) =
Hn(μ1, t1)/Gn(μ1, t1). For saving the computation time, we
can set an upper limit n̄ for n. That is, if Gn(μ1, t1) = 0 for all
n = 1, . . . , n̄, we then stop the seeking at the updating time t1
and consider � belongs to the original set {� ∈ R : D ≤ � ≤ D},
which leads to the output of the identifier is equal to the estimate
at the last time instant, i.e., D̂(t1) = D̂(t0), according to (60).
The same computation process is followed for the subsequent
updating time instants t2, t3, . . .. For many practical applica-
tions, such as simulating a DCV, locating nonzero values of
Gn(μi+1, ti+1) is a straightforward task following the algorithm
described above.

Note that even though the actuator states v(x, t) are measur-
able in this full-state feedback case, for the delay estimation,
one cannot adopt the “naive” method—that is, taking the time
and spatial derivatives of the signal v(x, t) to calculate d in
(10) straightforwardly—because of the following two reasons:
1) taking the time derivative of the measured signals always leads
to the undesired noise amplification in practice; 2) the possible
zero values of vt(x, t) accompanied with the unknown delay D
will engender singularity.

C. Delay-Adaptive Controller

With the sequence of time instants {ti ≥ 0}∞i=0, i ∈ Z+ deter-
mined by the triggering mechanism (48), and the parameter iden-
tifier (60), the delay-compensated adaptive control algorithm
Ud(t) on t ∈ [ti, ti+1) is designed as

Ud(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r
(
sin(ω(t− ti +

π
2ω ))− 1

)
if ti > Tf − 2T and ti−1 ≤ Tf − 2T and i ≥ 1

and Ud(t) ≡ 0 on t ∈ [0, ti) (61a)∫ 1

0 M1(y; D̂(ti))z(y, t)dy

+
∫ 1

0 M2(y; D̂(ti))w(y, t)dy

+
∫ 1

0 M3(y; D̂(ti))v(y, t)dy

+M4(D̂(ti))X(t), otherwise (61b)

where Tf − 2T ≥ 0 according to (49). The (61b) is the result of
replacing the unknown delay D in the nominal continuous-in-

time feedback (33) with the estimate D̂(ti) that is generated
with the triggered batch least-squares identifier (60). Defin-
ing the time instant ti satisfying the condition in (61a) as tz ,
(61a) is an excitation implemented in a time interval [tz, tz+1)
once Ud identically zero on [0, tz) is detected, to avoid the
case that Ud(t) is identically zero on t ∈ [0, tz+1), whose pur-
pose is to ensure the exact identification of the unknown delay
in the prescribed time Tf , which will be clear in the proof of
Lemma 5. The nonzero constant r, ω in (61a) are free design
parameters. Some guidelines about choosing the free design
parameters r, ω, and Tf from the practical point of view is given
in Remark 2.

Remark 2 (Selections of free r, ω, Tf in practice): The con-
stant r can be chosen small enough in practice to reduce the
effect of the excitation (61a) on the control performance. The
frequencyω in (61a) should be selected away from the natural in-
herent frequency of the plant to avoid the appearance of syntony.
The prescribed identification time Tf , together with the maxi-
mum dwell time T , are positively related to the amount of the
measurement data used in parameter estimation. The largerTf , T
would improve the robustness to the sensor measurement error
but prolong the time till exact parameter identification. On the
contrary, the smallerTf , T contributes to the fast identification of
the unknown delay, however, the robustness to the measurement
error may be reduced. How to improve the robustness to the
sensor measurement error under a short prescribed identification
time Tf , T is our future work.

Proposition 1 (Existence of solution in an interval):
For every (z[ti], w[ti], v[ti])

T ∈ L2((0, 1);R3), X(ti) ∈ Rm,
there exists a unique (weak) solution ((z, w, v)T , X) ∈
C0([ti, ti+1];L

2(0, 1);R3)× C0([ti, ti+1];Rm) to the system
(1)–(4), (9)–(12), and (61).

Proof: The proof is shown in Appendix C. �

V. MAIN RESULT

Before presenting the main theorem, we propose the following
technical lemmas, where when we say that v(x, t) is equal to
zero for x ∈ [0, 1], t ∈ [μi+1, ti+1], or not identically zero on
the same domain, we mean except possibly for finitely many
discontinuities of the functions v(x, t). These discontinuities
are isolated curves in the rectangle [0, 1]× [μi+1, ti+1].

Lemma 1 (Gn(μi+1, ti+1) = 0): The sufficient and neces-
sary condition of Gn(μi+1, ti+1) = 0 for all n ∈ N is v[t] = 0
on t ∈ [μi+1, ti+1].

Proof: Necessity: If Gn(μi+1, ti+1) = 0 for all n ∈ N, then
the definition (59) in conjunction with continuity of gn(t) for
t ∈ [μi+1, ti+1] [because of the definition (54) and the fact that
v ∈ C0([ti, ti+1];L

2(0, 1)) in Proposition 1] implies

gn(t) = 0, t ∈ [μi+1, ti+1]. (62)

According to the definition (54), the (62) implies

∫ 1

0

sin(xπn)v(x, t)dx = 0, t ∈ [μi+1, ti+1] (63)

for all n ∈ N. Since the set {√2 sin(xπn) : n = 1, 2, . . .} is
an orthonormal basis of L2(0, 1), we have v[t] = 0 for t ∈
[μi+1, ti+1].
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Sufficiency: If v[t] = 0 on t ∈ [μi+1, ti+1], then
Gn(μi+1, ti+1) = 0 for all n ∈ N is obtained directly by
recalling (59) and (54). �

Lemma 2 (Identifier properties at ti+1): For the adaptive
estimates defined by (60), the following statements hold:

1) If v[t] is not identically zero for t ∈ [μi+1, ti+1], then
D̂(ti+1) = D.

2) If v[t] is identically zero for t ∈ [μi+1, ti+1], then
D̂(ti+1) = D̂(ti).

Proof: Define a set

Si =
{
D ≤ � ≤ D : Hn(μi+1, ti+1) = Gn(μi+1, ti+1)�,

n = 1, 2, · · ·}. (64)

From (57), we know thatD ∈ Si. IfSi is a singleton, it is nothing
else but the generated adaptive estimate D̂(ti+1) by (60), which
is equal to the true delay D.

1) If v[t] is not identically zero for t ∈ [μi+1, ti+1], recalling
Lemma 1, there existsn ∈ N such thatGn(μi+1, ti+1) 
=
0. Now defining the index set I as the set of all n ∈ N
with Gn(μi+1, ti+1) 
= 0, then (64) implies that

Si =

{
� =

Hn(μi+1, ti+1)

Gn(μi+1, ti+1)
, n ∈ I

}

is a singleton, and therefore from (60) we get D̂(ti+1) =
D.

2) If v[t] is identically zero on t ∈ [μi+1, ti+1], according to
(53), (54), (58), (59), one obtains

Gn(μi+1, ti+1) = Hn(μi+1, ti+1) = 0, n ∈ N

and it follows that Si = {D ≤ � ≤ D}. Then, from (60)
one arrives at D̂(ti+1) = D̂(ti).

The proof is complete. �
Lemma 3 (Identifier properties for t ∈ [ti, limk→∞(tk))):

If D̂(ti) = D for certain i ∈ Z+, then D̂(t) = D for all t ∈
[ti, limk→∞(tk)).

Proof: According to Lemma 2, we have that D̂(ti+1) is equal
to either D or D̂(ti). Therefore, if D̂(ti) = D, then D̂(ti+1) =

D. Repeating this process, we then have D̂(t) = D for all t ∈
[ti, limk→∞(tk)). The proof is complete. �

Lemma 4 (Existence of a minimum dwell-time): There exists
a positive constant τd such that ti+1 − ti ≥ τd for all i ∈ Z+.

Proof: The result is established by discussing the following
two cases.

1) Case 1:The exact identification has not been achieved
for t ∈ [0, ti]. According to Lemmas 2 and 3, we know
D̂(t) ≡ D̂(0) on t ∈ [0, ti+1). Recalling Proposition 1,
we obtain that Ω(t) is continuous on t ∈ [ti, ti+1), with
possible finite nondifferentiable points (though it is differ-
entiable from the left and from the right, i.e., the left and
right derivatives are finite, at those points). Denoting the
maximum rate of change of Ω(t) on t ∈ (ti, ti+1) as Vi,
that is, Vi = max{maxt∈(ti,ti+1)/Ii |Ω̇(t)|, Ai} where Ii
is the set of those possible finite nondifferentiable points,
and where the setAi is the absolute values of left and right
derivatives at the points in Ii. Recalling the triggering
mechanism (48), the lower bound τ i of the dwell time is
given by

τ i ={
min

{
((1+a)Υ̂(D̂(0))−1)Ω(ti)

Vi
, T

}
> 0, if Ω(ti) 
= 0

T, if Ω(ti) = 0.

(65)

2) Case 2:The exact identification has been achieved for
[0, ti]. In this case, we have ti+1 − ti = T . We prove this
as follows. Once the exact delay identification is achieved,
the delay-adaptive control input is identical to the nominal
delay-compensated control input in Section III. When
Ω(ti) 
= 0, we have thatΩ(t) ≤ ΥΩ(ti) for ti ≤ t ≤ ti+1

according to Theorem 1. It follows from Υ̂(D̂(ti)) =
Υ̂(D) = Υ that Ω(t) < (1 + a)Υ̂(D̂(ti))Ω(ti) for ti ≤
t ≤ ti+1. Thus ti+1 − ti = T according to (48). When
Ω(ti) = 0, we straightforwardly have ti+1 − ti = T ac-
cording to the second equation in (48) and therefore,
ti+1 − ti = T .

The lemma is thus obtained. �
Corollary 1 (Well-posedness of the closed-loop system):

No Zeno phenomenon occurs, i.e., limi→∞ ti = +∞, and the
closed-loop system is well-posed in the sense that for ev-
ery (z[0], w[0])T ∈ L2((0, 1);R2), X(0) ∈ Rm, and D̂(0) ∈
[D,D], there exists a unique (weak) solution ((z, w, v)T , X) ∈
C0(R+;L

2(0, 1);R3)× C0(R+;Rm), and D̂(t) ∈ {� ∈ R :
D ≤ � ≤ D} for t ∈ [0,∞), to the system consisting of (1)–(4),
(9)–(12), (60), and (61).

Proof: Recalling Lemma 4, we have that
ti ≥ τdi, i ∈ Z+

where τd > 0, that is
lim
i→∞

(ti) = +∞ (66)

which implies a solution defined on R+ in the subsequent
analysis.

From the initial data (z[0], w[0])T ∈ L2((0, 1);R2), X(0) ∈
Rm and (12), recalling the result in Proposition 1 for i = 0, it
follows that ((z, w, v)T , X) ∈ C0([t0, t1];L

2(0, 1);R3)×
C0([t0, t1];Rm), which implies (z[t1], w[t1], v[t1])

T ∈
L2((0, 1);R3), X(t1) ∈ Rm. Recalling the result in Proposi-
tion 1 for i = 1, together with the solution obtained for [t0, t1],
we have that ((z, w, v)T , X) ∈ C0([t0, t2];L

2(0, 1);R3)×
C0([t0, t2];Rm). Repeating the above steps, we obtain that
((z, w, v)T , X) ∈ C0([t0, ti];L

2(0, 1);R3)× C0([t0, ti];Rm)
for i ∈ N. Applying (66), we thus have ((z, w, v)T , X) ∈
C0([R+;L

2(0, 1);R3)× C0(R+;Rm). It is straightforwardly
obtained from (60) that D̂(t) ∈ [D,D] if D̂(0) ∈ [D,D].

Corollary 1 is thus obtained. �
Lemma 5 (Finite-time convergence of the update law): The

estimate D̂ converges to the true value no latter than Tf , i.e.,

D̂(t) = D ∀t ∈ [tf ,∞) (67)
where 0 < tf ≤ Tf .

Proof: According to (61), we conclude that the control input
Ud(t) is not identically zero on t ∈ [0, tz+1) where the time
instant ti satisfying the condition in (61a) is denoted as tz . There
exists a time instant tf ≤ tz+1 (f > 0) such that Ud(t) is not
identically zero on t ∈ [μf , tf ]. Recalling (10) and (11) where
U(t) has been replaced by Ud(t), we conclude that the actuator
state v[t] is not identically zero on t ∈ [μf , tf ]. Recalling Lem-
mas 2 and 3, and Corollary 1, we thus obtain (67). According to
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(61a), (48), we have

tz < tz+1 ≤ Tf . (68)

Recalling tf ≤ tz+1, this lemma is obtained. �
Now, we are in a position to state our main result in the

following theorem, i.e., exponential regulation of the plant and
actuator states.

Theorem 2: For all initial data (z[0], w[0])T ∈ L2(0, 1),
X(0) ∈ Rm, D̂(0) ∈ [D,D], considering the closed-loop sys-
tem consisting of the plant (1)–(4), (9)–(12), the controller (61),
the triggering mechanism (48), and the least-squares identifier
(60), the exponential regulation of the closed-loop system is
obtained in the sense that there exist positive constants M, λ1

such that

Ω(t) ≤ Me−λ1t, t ≥ 0 (69)

where Ω(t) is defined in (35).
Proof. Case 1: Equation (61a) is not executed. Then, the

delay-adaptive control lawUd is (61b) all the time. Replacing the
nominal control law U by Ud defined by (61b) in (11), through
the transformations in Section III, the right boundary condition
of the actuator PDE (30) in the target system (17)–(20) and
(28)–(30) becomes

û(0, t) = ξ(t) (70)

where

ξ(t) = Ud(t; D̂)− U(t;D)

=

∫ 1

0

(M1(y; D̂)−M1(y;D))z(y, t)dy

+

∫ 1

0

(M2(y; D̂)−M2(y;D))w(y, t)dy

+

∫ 1

0

(M3(y; D̂)−M3(y;D))v(y, t)dy

+ (M4(D̂)−M4(D))X(t). (71)

Taking the derivative of (36) along the target system states
corresponding to the even-based closed-loop system consisting
of (17)–(20), (28), (29), and (70), through a similar process
in (44), recalling conditions (37)–(40) on δ, ra, rc, and rd
[we emphasize that conditions (37)–(40) only depend on the
known plant parameters and the known bounds of the unknown
parameters in Assumption 3], we obtain

V̇ (t) ≤ −λ1V (t) +
rc
2D

ξ(t)2, t ≥ 0 (72)

where λ1 is given in (46). According to (67) and (71), one can
establish that

ξ(t) ≡ 0, t ∈ [tf ,∞). (73)

We then have that

V̇ (t) ≤ −λ1V (t), t ≥ tf . (74)

Multiplying both sides of (74) by eλ1t and integrating the result-
ing terms from tf to t lead to the following inequality:

V (t) ≤ V (tf )e
−λ1(t−tf ), t ≥ tf

which by virtue of (41), is equivalent to

Ω(t) ≤ ΥΩ(tf )e
−λ1(t−tf ), t ≥ tf (75)

where Ω is defined in (35) and the positive constant Υ is given
in (47).

Note that the norm estimate (75) is only true for t ≥ tf . Next,
we extend our analysis for t ∈ [0, tf ]. With the help of (41), (71),
we obtain from (72) that

V̇ (t) ≤ −λ1V (t) +Q(D̂(0))V (t), t ∈ [0, tf ) (76)

where the positive constant Q(D̂(0)) is

Q(D̂(0)) = max
y∈[0,1]

{
(K1(0, y; D̂(0))−K1(0, y;D))2,

(K2(0, y; D̂(0))−K2(0, y;D))2, (R(0, y; D̂(0))−R(0, y;D))2,

(η(0; D̂(0))− η(0;D))2
} 2rc
Dξ1ξ3

(77)

which is derived by finding an upper bound for ξ(t)2 (71) in the
form of target states β, α, û, and X , and recalling (41).

Hence, the following holds:

Ω(t) ≤ ΥΩ(0)eλ2(D̂(0))t, t ∈ [0, tf ] (78)

where

λ2(D̂(0)) = |Q(D̂(0))− λ1| > 0

and the positive constantΥ is given in (47). Therefore, it straight-
forwardly follows that

Ω(tf ) ≤ Υeλ2(D̂(0))tfΩ(0). (79)

Considering (78), combining (75) and (79) yields

Ω(t) ≤ Υ2e(λ2(D̂(0))+λ1)tfΩ(0)e−λ1t, t ≥ 0 (80)

which is equivalent to (69) with

M = Υ2e(λ2(D̂(0))+λ1)tfΩ(0).

Case 2:Equation (61a) is executed. Denoting the time instant
ti satisfying the condition in (61a) as tz , we know from (61) that

Ud =

⎧⎨
⎩
0, t ∈ [0, tz) (81a)
r
(
sin(ω(t− ti +

π
2ω ))− 1

)
, t ∈ [tz, tz+1) (81b)

U(t;D), t ∈ [tz+1,∞) (81c)

and tf = tz+1 in Lemma 5, recalling Lemmas 2 and 3 as well as
(10) and (11) whereU(t) has been replaced byUd(t). Therefore,
following (73)–(75), applying (81c) that implies that ξ in (71) is
identically zero on t ≥ tz+1, we have

Ω(t) ≤ ΥΩ(tz+1)e
−λ1(t−tz+1), t ≥ tz+1. (82)

Following (76)–(79), recalling (81a), we have

Ω(t) ≤ ΥΩ(0)eλ3t, t ∈ [0, tz] (83)

for t ∈ [0, tz), where λ3 = Q1 − λ1 and the positive constant
Q1 is the one in (77) removing K1(0, y; D̂(0)), K2(0, y; D̂(0)),
R(0, y; D̂(0)), η(0; D̂(0)). This implies

Ω(tz) ≤ ΥΩ(0)e|λ3|tz . (84)

Similarly, we obtain from (81b) that

Ω(t)≤ΥΩ(tz)e
λ4(t−tz)+

4rcr
2(eλ4(t−tz) − 1)

λ4Dξ1ξ3
, t ∈ [tz, tz+1]

where λ4 = 2Q1 − λ1. Applying (68) and (84), we have

Ω(tz+1) ≤ Υ2Ω(0)e|λ3|Tf+|λ4|T +
4rcr

2(e|λ4|T − 1)

|λ4|Dξ1ξ3
. (85)

Inserting (85) into (82), one obtains (69) where

M = Υ3Ω(0)e|λ3|Tf+|λ4|T+λ1Tf +
4Υrc(e

|λ4|T − 1)eλ1Tf

|λ4|Dξ1ξ3
r2.

(86)
The proof of the theorem is complete. �
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Fig. 2. Deep-sea construction vessel.

VI. SIMULATION

A DCV is used to place equipment to be installed at the
predetermined location on the seafloor, which is shown in Fig. 2.
Different from [57] that deals with a known sensor delay that
exists in the large-distance transmission of the sensing signal
from the seafloor to the vessel on the ocean surface through a
set of acoustics devices, we consider all possible delays here
(including the transmission of the sensing signal, computation
of the control law, and the delay in the hydraulic actuator for
the ship-mounted crane and so on) as an unknown delay in the
control input channel. By designing a control input at the top
of the crane cable, our goal is to reduce the oscillations of the
crane cable with the purpose of placing the payload attached at
the bottom of the cable in the target area, despite the presence
of the unknown delay.

A. Model

The following dynamic model of cable-payload lateral oscil-
lations in DCV is taken from [57]

T0ux̄(0, t) = U(t−D) (87)

ρutt(x̄, t) = T0ux̄x̄(x̄, t)− dcut(x̄, t) (88)

u(L, t) = bL(t) (89)

MLb̈L(t) = −dLḃL(t) + T0ux̄(L, t) (90)

∀(x̄, t) ∈ [0, L]× [0,∞). The state u(x̄, t) describes the lateral
oscillation displacement along the cable, and bL(t) denotes that
of the payload. The control input U is subject to the unknown
time delay D mentioned above. The static tension T0 is de-
fined as T0 = MLg − Fbuoyant, where the buoyancy Fbuoyant

isFbuoyant =
1
4πD

2
chcρsg.The physical parameters of the DCV

are given in Table I.

TABLE I
PHYSICAL PARAMETERS OF THE DCV

Like [57], after applying the Riemann transformations

z(x̄, t) = ut(x̄, t)−
√

T0

ρ
ux̄(x̄, t) (91)

w(x̄, t) = ut(x̄, t) +

√
T0

ρ
ux̄(x̄, t) (92)

introducing a space normalization variable

x =
x̄

L
∈ [0, 1] (93)

and defining X(t) = ḃL(t), (87)–(90) are rewritten as the con-
sidered plant (1)–(5) with the coefficients

c0 = 2

√
1

T0ρ
, q1 = q2 =

1

L

√
T0

ρ
(94)

d1 = d2 = d3 = d4 =
−dc
2ρ

, q = −1, p = 1 (95)

C = 2, A =
−dL
ML

+

√
T0ρ

ML
, B = −

√
T0ρ

ML
(96)

which is the simulation model in this section, where it can be
checked that the plan parameters in (94)–(96) satisfy Assump-
tions 1, 2 by recalling Table I.

The initial conditions are defined as

z(x, 0) = 8 sin(5πx(1− x)), w(x, 0) = −8 cos(5πx)

thereby, X(0) = 1.13, recalling (4), which physically corre-
sponds to the initial oscillation velocities of the payload. The
unknown delay D is set as 1, and the known bounds D and D
are assumed as 0.01 and 2. We will show the simulation results
of the following four cases.

1) Open loop: The control input is zero.
2) Nonadaptive control: The nominal delay-compensated

control with the unknown delayD replaced by its estimate
0.25.

3) Delay-adaptive control with the initial delay estimate
D̂(0) = 0.25, where the design parameter K in (22) is
chosen as K = −18.

4) Delay-adaptive control with the initial delay estimate
D̂(0) = 1.5, where the design parameter K in (22) is
chosen as K = −13.

Other design parameters are chosen as

δ = − 0.36, ra = 1.02, rc = 1, rd = 0.02, a = 2,

T = 3.12, Ñ = 10, Tf = 8, r = 0.5, ω = 1,
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Fig. 3. Delay-adaptive control input Ud(t) with D̂(0) = 0.25 or
D̂(0) = 1.5 and the nonadaptive control input U0(t).

according to (37)–(40), and (49), where a, Tf , Ñ are free but
positive, and where r and ω are free. Actually, like most physical
systems, (61a) associated with r and ω has not been activated in
the simulation because the control signal is not identically zero
for a certain time period from the beginning. The parameter n̄
mentioned in Remark 1 is set as n̄ = 2.

Remark 3: In addition to Remark 1 about the implementation
of the delay identifier, some more things are worth noting in the
simulation. 1) Approximating the integration with respect to
the space variable in the identifier as the summation operator
will cause a tiny error between the final parameter estimate
and the true value in the simulation result, which will be seen
in Fig. 4. The smaller space step adopted in the simulation
will make the error smaller. 2) The error of approximation in
the simulation will also lead to tiny differences between the
outputs of the identifer at each updating time even if the effective
parameter deification has been achieved. Therefore, we set a
small margin to tolerate the approximation error, that is—if
the difference between the estimates from the identifier at two
adjacent updating times is smaller than 2% of the true value,
we consider that this difference is caused by the approximation
error in the simulation, and thus keep the estimate value as same
as the one at the former updating time.

B. Simulation Result

The numerical computation is conducted using the finite
difference method with the step sizes of t and x as 0.001, and
0.02, respectively. The approximate solutions of the kernel PDEs
used in the control law, which is defined by (48), (60), (61) where
the integral operators are approximated by sums, are also solved
by the finite difference method based on the discretization of the
triangular domain into a uniformly spaced grid with the interval
of 0.02.

The designed delay-adaptive control input and the estimate
of the unknown delay are shown in Figs. 3 and 4, respectively,
from which we know that the identification of the unknown
delay is achieved at the first triggering time, no matter the
initial delay estimate is less than (D̂(0) = 0.25) or larger than
(D̂(0) = 1.5) the true value D = 1. As mentioned in Remark 3,
the tiny differences between the delay estimate and its true values
come from the error of approximation—that is, approximating
the integration with respect to the space variable from 0 to 1 in the
identifier as the summation operator for the 51 spatial discrete
points with the fixed interval of 0.02. The time evolution of the

Fig. 4. Estimate of the unknown delay D under the initial estimate
D̂(0) = 0.25 or D̂(0) = 1.5.

Fig. 5. Evolution of X(t) under the delay-adaptive control Ud(t) with
D̂(0) = 0.25 or D̂(0) = 1.5 and the nonadaptive control U0(t).

Fig. 6. Evolution of the plant state z(x, t) under the delay-adaptive
control Ud(t) with D̂(0) = 0.25 or D̂(0) = 1.5.

ODE stateX(t) is shown in Fig. 5, where the brown dashed line,
the red dashed line, the black solid line, and the blue dot-dash line
show the results of the four cases mentioned in Section VI-A,
respectively. Although both the nonadaptive delay-compensated
controller and the delay-adaptive controllers can attenuate the
state of the ODE in comparison to the open loop scenario, Fig. 5
further reveals the “delay mismatch” in the nonadaptive control
law leads to slower convergence after the time point when the
exact delay estimate is obtained and the updated input signal
reaches the ODE through the transport PDEs. Even though the
simulation model, like many practical models that usually in-
clude damping, is not an open-loop unstable plant, the proposed
control design still shows improved convergence rates under the
proposed delay-adaptive controllers as compared with both the
open-loop case and nonadaptive delay-compensated controller.
Similarly, it is shown in Figs. 6–8 that the PDE plant states
z(x, t) and w(x, t), and the actuator state v(x, t) all converge to
zero when the system is subject to the proposed delay-adaptive
control inputs with D̂(0) = 0.25 or D̂(0) = 1.5.
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Fig. 7. Evolution of the plant state w(x, t) under the delay-adaptive
control Ud(t) with D̂(0) = 0.25 or D̂(0) = 1.5.

Fig. 8. Evolution of the actuator state v(x, t) under the delay-adaptive
control Ud(t) with D̂(0) = 0.25 or D̂(0) = 1.5.

It is easy to obtain the oscillation energy of the cable in
DCV ρ

2‖ut(·, t)‖2 + T0

2 ‖ux(·, t)‖2 = ρ
8‖w(·, t) + z(·, t)‖2 +

ρ
8‖w(·, t)− z(·, t)‖2 by recalling (91)–(93). Therefore, it is
known from the results z(x, t) and w(x, t) in Figs. 6 and 7 that
the oscillation energy of the cable decreases to zero fast under
the proposed delay-adaptive controller. One can also observe
from Fig. 5 that the regulation performance of the ODE, i.e., the
payload, is satisfied.

VII. CONCLUSION AND FUTURE WORK

In this article, we have proposed a delay-adaptive control
scheme for a 2 × 2 hyperbolic PDE-ODE system, where the
input delay is arbitrarily large and unknown. The controller
consists of a nominal delay-compensated control law, a batch
least-squares identifier for the unknown delay, and a triggering
mechanism to determine the update times of the identifier. We
have proved that the proposed control guarantees the following:

1) the avoidance of Zeno phenomenon;
2) the identification of the unknown boundary input delay

before the prescribed time;
3) the exponential regulation of both the plant and the actu-

ator states to zero.
The effectiveness of the proposed design is verified by nu-

merical simulation in the control application of a DCV subject
to input delay. This article only deals with the state-feedback
adaptive-delay control design for coupled hyperbolic PDEs
whose actuator states and plant states are measurable.

In our future work, the output-feedback control design with
unmeasurable actuator and plant states, and improvement of
the robustness to the sensor measurement error under a short
expected identification time, will be considered.

APPENDIX

A. Gain Kernels PDEs and Their Associated Boundary
Conditions

(a) First-step transformation

The backstepping transformation (13) and (14) lead to the fol-
lowing PDE-ODE system of kernel conditions for ϕ, φ,Ψ,Φ, γ,
and λ. These conditions are derived by mapping the original
plant to the first intermediate system

q2ϕy(x, y)− q1ϕx(x, y)− (d4 − d1)ϕ(x, y)

− d2φ(x, y) = 0 (97)

q1φx(x, y)+q1φy(x, y)+d3ϕ(x, y) = 0 (98)

q2Ψx(x, y)− q1Ψy(x, y) + (d4 − d1)Ψ(x, y)

− d3Φ(x, y) = 0 (99)

q2Φx(x, y) + q2Φy(x, y)− d2Ψ(x, y) = 0 (100)

q1γ
′(x) + γ(x)(A− d1In) + q1Cφ(x, 0) = 0 (101)

q2λ
′(x)− λ(x)(A− d4In)− q1CΨ(x, 0) = 0 (102)

with the boundary conditions

ϕ(x, x) =
d2

q1 + q2
(103)

q2ϕ(x, 0) + q1pφ(x, 0) = γ(x)B (104)

Ψ(x, x) =
−d3

q1 + q2
(105)

q2Φ(x, 0) + q1pΨ(x, 0) = λ(x)B (106)

λ(0) = KT (107)

γ(0) = C − pKT (108)

where In is an identity matrix with dimension n.
Similarly, the boundary conditions of the gain kernels asso-

ciated with the inverse backstepping transformation (15), (16),
namely, ϕ̄, φ̄, γ̄, Ψ̄, Φ̄, and λ̄ are given by

q2Ψ̄x(x, y)− q1Ψ̄y(x, y) + (d4 − d1)Ψ̄(x, y)

+ d3φ̄(x, y) = 0 (109)

q1φ̄x(x, y) + q1φ̄y(x, y)− d2Ψ̄(x, y) = 0 (110)

q2ϕ̄y(x, y)− q1ϕ̄x(x, y)− (d4 − d1)ϕ̄(x, y)

+ d2Φ̄(x, y) = 0 (111)

q2Φ̄y(x, y) + q2Φ̄x(x, y) + d3ϕ̄(x, y) = 0 (112)

q1γ̄
′(x)− γ̄(x)(A+BKT + d1In)− d2λ̄(x) = 0 (113)

q2λ̄
′(x) + λ̄(x)(A+BKT + d4In) + d3γ̄(x) = 0 (114)

with the boundary conditions

Ψ̄(x, x) = − d3
q1 + q2

(115)

q1pφ̄(x, 0) + q2ϕ̄(x, 0) = γ̄(x)B (116)

ϕ̄(x, x) =
d2

q1 + q2
(117)

q2Φ̄(x, 0) + q1pΨ̄(x, 0) = λ̄(x)B (118)

λ̄(0) = −KT (119)

γ̄(0) = pKT − C. (120)
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The set of (97)–(108) and (109)–(120) are well-known for
coupled linear heterodirectional hyperbolic PDE-ODE systems,
and their well-posedness has been proved in [43, Th. 4.1].

(b) Second-step transformation
The gain kernels K1,K2, and η are defined as follows:

dK1x(x, y) + q1K1y(x, y) = −d1K1(x, y) (121)

dK2x(x, y)− q2K2y(x, y) = −d4K2(x, y) (122)

dη′(x)A−1
m + η(x) = 0 (123)

with the boundary conditions

K1(1, y) =
1

c0
Ψ̄(1, y)− 1

c0
qφ̄(1, y) (124)

K2(1, y) =
1

c0
Φ̄(1, y)− 1

c0
qϕ̄(1, y) (125)

K1(x, 1) =
qq2
q1

K2(x, 1) (126)

q1pK1(x, 0) + q2K2(x, 0) = η(x)B (127)

η(1) = − 1

c0
qγ̄(1) +

1

c0
λ̄(1). (128)

The proof of well-posedness of (121)–(128) is given in [7,
Lemma 2]. To derive conditions (121)–(128), one needs to
consider (21) and (23). Hence, (24) holds straightforwardly
under the conditions (124), (125), and (128). Taking the time
and spatial derivatives of (23), inserting the results into (25),
recalling (17)–(20) and (24), one obtains

ut(x, t) + dux(x, t)− q2K2(x, 1)c0u(1, t)

= vt(x, t)+

∫ 1

0

K1(x, y)αt(y, t)dy +

∫ 1

0

K2(x, y)βt(y, t)dy

+ dvx(x, t) + d

∫ 1

0

K1x(x, y)α(y, t)dy

+ d

∫ 1

0

K2x(x, y)β(y, t)dy

+ η(x)Ẋ(t) + dη′(x)X(t)− q2K2(x, 1)c0u(1, t)

= vt(x, t)− q1

∫ 1

0

K1(x, y)αx(y, t)dy

+ d1

∫ 1

0

K1(x, y)α(y, t)dy

+ q2

∫ 1

0

K2(x, y)βx(y, t)dy + d4

∫ 1

0

K2(x, y)β(y, t)dy

+ dvx(x, t) + d

∫ 1

0

K1x(x, y)α(y, t)dy

+ d

∫ 1

0

K2x(x, y)β(y, t)dy + η(x)(AmX(t) +Bβ(0, t))

+ dη′(x)X(t)− q2K2(x, 1)c0u(1, t)

= (q2K2(x, 1)q − q1K1(x, 1))α(1, t)

+

∫ x

0

(q1K1y(x, y) + d1K1(x, y) + dK1x(x, y))α(y, t)dy

− (q2K2(x, 0) + q1K1(x, 0)p− η(x)B)β(0, t)

+

∫ x

0

(d4K2(x, y)− q2K2y(x, y) + dK2x(x, y))β(y, t)dy

+ (η(x)Am + dη′(x))X(t) = 0. (129)

The necessary and sufficient conditions for (129) to hold are
given as (121)–(123), (126), and (127).

(c) Third-step transformation
The derivation of the gain kernels PDER andRI is performed

as follows. Substituting the time and spatial derivatives of (27)
into (25) and recalling (28)–(30), we have

ut(x, t) + dux(x, t)− q2K2(x, 1)c0u(1, t)

= ût(x, t) +

∫ 1

x

R(x, y)ût(y, t)dy + dûx(x, t)

+ d

∫ 1

x

Rx(x, y)û(y, t)dy − dR(x, x)û(x, t)

− q2K2(x, 1)c0û(1, t)

= −d

∫ 1

x

R(x, y)ûx(y, t)dy + d

∫ 1

x

Rx(x, y)û(y, t)dy

− dR(x, x)û(x, t)− q2K2(x, 1)c0û(1, t)

= −(dR(x, 1) + q2K2(x, 1)c0)û(1, t)

+ d

∫ 1

x

(Rx(x, y) +Ry(x, y))û(y, t)dy = 0. (130)

For (130) to hold, the following equality must be satisfied:

Rx(x, y) +Ry(x, y) = 0 (131)

dR(x, 1) = −q2c0K2(x, 1) (132)

which obviously admits a unique solution

R(x, y) = −q2c0
d

K2(x− y + 1, 1).

Similarly, substituting the time and spatial derivatives of (32)
into (29) and recalling (25), we have

ût(x, t) + dûx(x, t)

= ut(x, t) +

∫ 1

x

P (x, y)ut(y, t)dy + dux(x, t)

+ d

∫ 1

x

Px(x, y)u(y, t)dy − dP (x, x)u(x, t)

= q2K2(x, 1)c0u(1, t)− d

∫ 1

x

P (x, y)ux(y, t)dy

+

∫ 1

x

P (x, y)q2K2(y, 1)c0dyu(1, t)

+ d

∫ 1

x

Px(x, y)u(y, t)dy − dP (x, x)u(x, t)

=

(
q2K2(x, 1)c0 − dP (x, 1)

+

∫ 1

x

P (x, y)q2K2(y, 1)c0dy

)
u(1, t)

+ d

∫ 1

x

(Py(x, y) + Px(x, y))u(y, t)dy = 0.

The equation above suggests that the kernel function P in the
inverse transformation (32) satisfies the following PDE with the
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corresponding boundary value:

Py(x, y)− Px(x, y) = 0 (133)

P (x, 1) =
q2
d
K2(x, 1)c0 +

1

d

∫ 1

x

P (x, y)q2K2(y, 1)c0dy

(134)

whose well-posedness can be obtained by the method of char-
acteristics.

B. Expressions of the Controller Gain Functions M1, M2,
M3, M4

The functions M1, M2, M3, and M4 are given as follows:

M1(y) =

∫ 1

0

R(0, s)K1(s, y)ds−K1(0, y)

+

∫ 1

0

R(0, s1)

∫ 1

s1

P (s1, s)K1(s, y)dsds1

−
∫ 1

y

[ ∫ 1

0

R(0, y)K1(y, s)dy −K1(0, s)

+

∫ 1

0

R(0, s1)

∫ 1

s1

P (s1, y)K1(y, s)dyds1

]
φ(s, y)ds

−
∫ 1

y

[ ∫ 1

0

R(0, y)K2(y, s)dy −K2(0, s)

+

∫ 1

0

R(0, s1)

∫ 1

s1

P (s1, y)K2(y, s)dyds1

]
Ψ(s, y)ds

M2(y) = −
∫ 1

y

[ ∫ 1

0

R(0, y)K1(y, s)dy −K1(0, s)

+

∫ 1

0

R(0, s1)

∫ 1

s1

P (s1, y)K1(y, s)dyds1

]
ϕ(s, y)ds

+

∫ 1

0

R(0, s)K2(s, y)ds−K2(0, y)

+

∫ 1

0

R(0, s1)

∫ 1

s1

P (s1, s)K2(s, y)dsds1

−
∫ 1

y

[ ∫ 1

0

R(0, y)K2(y, s)dy −K2(0, s)

+

∫ 1

0

R(0, s1)

∫ 1

s1

P (s1, y)K2(y, s)dyds1

]
Φ(s, y)ds

M3(y) = R(0, y) +

∫ y

0

R(0, s)P (s, y)ds

M4 =

∫ 1

0

R(0, y)η(y)dy − η(0)

+

∫ 1

0

R(0, y)

∫ 1

y

P (y, s)η(s)dsdy

−
∫ 1

0

[ ∫ 1

0

R(0, s)K2(s, y)ds−K2(0, y)

+

∫ 1

0

R(0, s1)

∫ 1

s1

P (s1, s)K2(s, y)dsds1

]
λ(y)dy

−
∫ 1

0

[ ∫ 1

0

R(0, s)K1(s, y)ds−K1(0, y)

+

∫ 1

0

R(0, s1)

∫ 1

s1

P (s1, s)K1(s, y)dsds1

]
γ(y)dy

where K1,K2, η, R, and P are parameterized by the unknown
delayD = 1

d according to the conditions defined in Appendix A.

C. Proof of Proposition 1

Case 1: With the delay-adaptive control input Ud (61b),
applying the following transformations:

α(x, t) = e
d1
q1

xᾱ(x, t) (135)

β(x, t) = e−
d4
q2

xβ̄(x, t) (136)

the target system, i.e., equivalently closed-loop system, is written
as

Ẋ(t) = AmX(t) +Bβ̄(0, t) (137)

ᾱ(0, t) = − pβ̄(0, t) (138)

ᾱt(x, t) = − q1ᾱx(x, t) (139)

β̄t(x, t) = q2β̄x(x, t) (140)

β̄(1, t) = c0e
d4
q2 û(1, t) + qe

d1
q1

+
d4
q2 ᾱ(1, t) (141)

ût(x, t) = − dûx(x, t) (142)

û(0, t) = −
∫ 1

0

K1i(y)ᾱ(y, t)dy −
∫ 1

0

K2i(y)β̄(y, t)dy

+

∫ 1

0

Ri(y)û(y, t)dy − ηiX(t) (143)

for t ∈ [ti, ti+1) where K1i(y) = (K1(0, y; D̂(ti))−K1(0, y;

D))e
d1
q1

y , K2i(y) = (K2(0, y; D̂(ti))−K2(0, y;D))e−
d4
q2

y ,
Ri(y) = R(0, y; D̂(ti))−R(0, y;D), and ηi = η(0; D̂(ti))−
η(0;D) considering (31).

Next, we prove the well-posedness of (137)–(143) by the
method of characteristics following [16]. Considering a constant
0 < T̄i < min{ti+1 − ti,

1
q1
, 1
q2
, 1
d}, by the method of charac-

teristics, for ς ∈ [0, T̄i] we get

β̄(x, ti + ς)=

⎧⎪⎪⎨
⎪⎪⎩
β̄(x+ q2ς, ti), x < 1− q2ς

c0e
d4
q2 û(1−d(ς − 1−x

q2
), ti)

+qe
d1
q1

+
d4
q2 ᾱ(1−q1(ς− 1−x

q2
), ti), x ≥ 1−q2ς

(144)

ᾱ(x, ti + ς) =

{
ᾱ(x− q1ς, ti), x > q1ς

−pβ̄(q2(ς − x
q1
), ti), x ≤ q1ς.

(145)

Integrating (137) and recalling (144), we have

X(ti + ς) = Am

∫ ti+ς

ti

X(τ)dτ+

∫ ς

0

Bβ̄(q2τ, ti)dτ +X(ti)

(146)

for ς ∈ [0, T̄i]. According to (142) and (143), we also obtain by
the method of characteristics that

û(x, ti + ς) = û(x− dς, ti), x > dς (147)

Authorized licensed use limited to: Xiamen University. Downloaded on December 06,2024 at 04:53:00 UTC from IEEE Xplore.  Restrictions apply. 



WANG AND DIAGNE: DELAY-ADAPTIVE BOUNDARY CONTROL OF COUPLED HYPERBOLIC PDE-ODE CASCADE SYSTEMS 8169

and the solution û(x, ti + ς) for x ≤ dς is given by

û(x, ti + ς) = û(0, ti + t∗)

= −
∫ 1

0

K1i(y)ᾱ(y, ti + t∗)dy −
∫ 1

0

K2i(y)β̄(y, ti + t∗)dy

+

∫ 1

0

Ri(y)û(y, ti + t∗)dy − ηiX(ti + t∗)

= s(ti + t∗) +
∫ dt∗

0

Ri(y)û
(
0, ti + t∗ − y

d

)
dy, x ≤ dς

(148)

where t∗ = ς − x
d ∈ [0, ς], and where

s(ti + t∗) = −
∫ 1

0

K1i(y)ᾱ(y, ti + t∗)dy

−
∫ 1

0

K2i(y)β̄(y, ti + t∗)dy

− ηiX(ti + t∗) +
∫ 1

dt∗
Ri(y)û(y − dt∗, ti)dy.

(149)

Applying (144)–(146), one obtains

s(ti + t∗) =
∫ q1t

∗

0

K1i(y)pβ̄

(
q2

(
t∗ − y

q1

)
, ti

)
dy

−
∫ 1

q1t∗
K1i(y)ᾱ(y − q1t

∗, ti)dy

−
∫ 1−q2t

∗

0

K2i(y)β̄(y + q2t
∗, ti)dy

−
∫ 1

1−q2t∗
K2i(y)

(
c0e

d4
q2 û

(
1− d

(
t∗− 1− y

q2

)
, ti

)

+ qe
d1
q1

+
d4
q2 ᾱ

(
1− q1

(
t∗ − 1− y

q2

)
, ti

))
dy

− ηi

(
Am

∫ ti+t∗

ti

X(τ)dτ

+

∫ t∗

0

Bβ̄(q2τ, ti)dτ +X(ti)

)

+

∫ 1

dt∗
Ri(y)û(y − dt∗, ti)dy. (150)

Recalling (ᾱ[ti], β̄[ti], û[ti])
T ∈ L2((0, 1);R3), X(ti) ∈

Rm ensured by the initial condition (z[ti], w[ti], v[ti])
T ∈

L2((0, 1);R3), X(ti) ∈ Rm and the transformations (13), (14),
(23), (32), (135), and (136), it is obtained from (150) that
s(ti + t∗) is well-defined.

Defining � = t∗ − y
d , we obtain from (148) that

û(0, ti + t∗)=s(ti + t∗)+d

∫ t∗

0

Ri(d(t
∗ − �))û(0, ti + �)d�

(151)

for t∗ ∈ [0, ς]. Since s(ti + t∗) and Ri(d(t
∗ − �)) are well

defined for t∗ ∈ [0, ς], where ς ∈ [0, T̄i], and in addition
Ri(d(t

∗ − �)) is also continuous in the interval, then
(151) is a linear Volterra integral equation with a unique
solution (see [29, Th. 5]). Recalling (144)–(148) and
(ᾱ[ti], β̄[ti], û[ti])

T ∈ L2((0, 1);R3), X(ti) ∈ Rm, we obtain

the well-posedness result in the sense of ((ᾱ, β̄, û)T , X) ∈
C0([ti, T̄i];L

2(0, 1);R3)× C0([ti, T̄i];Rm). Then, starting
from (ᾱ[T̄i], β̄[T̄i], û[T̄i])

T ∈ L2((0, 1);R3), X(T̄i) ∈ Rm,
repeating the above process step by step, we obtain
((ᾱ, β̄, û)T , X) ∈ C0([ti, ti+1];L

2(0, 1);R3)× C0([ti, ti+1];
Rm). Recalling the transformations (15), (16), (23), (27), (135),
and (136), Proposition 1 is thus obtained.

Case 2: With the delay-adaptive control input Ud (61a), the
only difference from Case 1 is that the left boundary condition
of û becomes

û(0, t) = −
∫ 1

0

K1z(y)ᾱ(y, t)dy −
∫ 1

0

K2z(y)β̄(y, t)dy

+

∫ 1

0

Rz(y)û(y, t)dy − ηzX(t)

+ r
(
sin

(
ω
(
t− tz +

π

2ω

))
− 1

)
for t ∈ [tz, tz+1), where K1z(y) = −K1(0, y;D)e

d1
q1

y ,

K2z(y) = −K2(0, y;D)e−
d4
q2

y , Rz(y) = −R(0, y;D), and
ηz = −η(0;D). This difference introduces an additional term
r(sin(ω(t∗ + π

2ω ))− 1), which is well-defined, into s(tz + t∗)
in (150) (replacing K, R, η by K, R, η). Therefore, s(tz + t∗)
is still well-defined, and thus well-posedness result in Case 1
still holds.

D. Norms equivalence between the original and the
target systems’ states

From (13)–(16), (27), and (32), we get

‖α(·, t)‖2 ≤ η1

(
‖z(·, t)‖2 + ‖w(·, t)‖2 + |X(t)|2

)
(152)

‖β(·, t)‖2 ≤ η2

(
‖z(·, t)‖2 + ‖w(·, t)‖2 + |X(t)|2

)
(153)

‖z(·, t)‖2 ≤ η3

(
‖α(·, t)‖2 + ‖β(·, t)‖2 + |X(t)|2

)
(154)

‖w(·, t)‖2 ≤ η4

(
‖α(·, t)‖2 + ‖β(·, t)‖2 + |X(t)|2

)
(155)

‖u(x, t)‖2 ≤ η5‖û(x, t)‖2 (156)

‖û(x, t)‖2 ≤ η6‖u(x, t)‖2 (157)

where

η1 = 4

(
1 +

∫ 1

0

∫ x

0

φ(x, y)2dydx+

∫ 1

0

∫ x

0

ϕ(x, y)2dydx

+

∫ 1

0

γ(x)2dx

)

η2 = 4

(
1 +

∫ 1

0

∫ x

0

Ψ(x, y)2dydx+

∫ 1

0

∫ x

0

Φ(x, y)2dydx

+

∫ 1

0

λ(x)2dx

)

η3 = 4

(
1 +

∫ 1

0

∫ x

0

φ̄(x, y)2dydx+

∫ 1

0

∫ x

0

ϕ̄(x, y)2dydx

+

∫ 1

0

γ̄(x)2dx

)
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η4 = 4

(
1 +

∫ 1

0

∫ x

0

Ψ̄(x, y)2dydx+

∫ 1

0

∫ x

0

Φ̄(x, y)2dydx

+

∫ 1

0

λ̄(x)2dx

)

η5 = 2

(
1 +

∫ 1

0

∫ 1

x

R(x, y)2dydx

)

η6 = 2

(
1 +

∫ 1

0

∫ 1

x

P (x, y)2dydx

)
.

Recalling (23), together with (152), (153), (156), and (157),
yields

||v(·, t)||2 ≤ 4

(
η5 +

∫ 1

0

∫ 1

0

K1(x, y)
2dydx

+

∫ 1

0

∫ 1

0

K2(x, y)
2dydx+

∫ 1

0

η(x)2dx

)

× (‖û(·, t)‖2+||α(·, t)||2 + ||β(·, t)||2 + |X(t)|2)
(158)

||û(·, t)||2 ≤ 4η6(η1 + η2 + 1)

(
1 +

∫ 1

0

∫ 1

0

K1(x, y)
2dydx

+

∫ 1

0

∫ 1

0

K2(x, y)
2dydx+

∫ 1

0

η(x)2dx

)

× (||v(·, t)||2+‖z(·, t)‖2+‖w(·, t)‖2 + |X(t)|2) .
(159)

Defining

Ω̄(t) = ‖α[t]‖2 + ‖β[t]‖2 + ‖û[t]‖2 +X(t)2 (160)

one obtains

ξ1Ω(t) ≤ Ω̄(t) ≤ ξ2Ω(t) (161)

where

ξ1 = 1/

(
1 + η3 + η4 + 4η5 + 4

∫ 1

0

∫ 1

0

K1(x, y)
2dydx

+ 4

∫ 1

0

∫ 1

0

K2(x, y)
2dydx+ 4

∫ 1

0

η(x)2dx

)
(162)

ξ2 = 1 + η1 + η2

+ 4η6(η1 + η2 + 1)

(
1 +

∫ 1

0

∫ 1

0

K1(x, y)
2dydx

+

∫ 1

0

∫ 1

0

K2(x, y)
2dydx+

∫ 1

0

η(x)2dx

)
. (163)
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